Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
Для начала нам нужно найти длину диагонали AC прямоугольника ABCD. Мы можем воспользоваться теоремой Пифагора, так как треугольник ACD прямоугольный:
AC^2 = AD^2 + DC^2
AC^2 = 4^2 + 6^2
AC^2 = 16 + 36
AC^2 = 52
AC = √52
AC = 2√13
Теперь мы можем найти периметр треугольника AOB, используя теорему Пифагора в треугольнике AOB:
AB^2 = AO^2 + OB^2
6^2 = AO^2 + OB^2
36 = AO^2 + OB^2
Так как треугольник AOB прямоугольный, то AO и OB являются катетами, а AC - гипотенузой. Таким образом, AO + OB = AC:
AO + OB = 2√13
AO = 2√13 - OB
Подставляем это выражение в уравнение для периметра:
36 = (2√13 - OB)^2 + OB^2
36 = 52 - 4√13OB + OB^2 + OB^2
36 = 52 - 4√13OB + 2OB^2
Теперь нам нужно решить это уравнение. Мы знаем, что BD = 7, и так как BD = AO + OB, то:
7 = 2√13 - OB + OB
7 = 2√13
OB = 2√13 - 7
Подставляем это значение обратно в уравнение для периметра:
36 = 52 - 4√13(2√13 - 7) + 2(2√13 - 7)^2
После решения этого уравнения мы найдем периметр треугольника AOB.
AC^2 = AD^2 + DC^2
AC^2 = 4^2 + 6^2
AC^2 = 16 + 36
AC^2 = 52
AC = √52
AC = 2√13
Теперь мы можем найти периметр треугольника AOB, используя теорему Пифагора в треугольнике AOB:
AB^2 = AO^2 + OB^2
6^2 = AO^2 + OB^2
36 = AO^2 + OB^2
Так как треугольник AOB прямоугольный, то AO и OB являются катетами, а AC - гипотенузой. Таким образом, AO + OB = AC:
AO + OB = 2√13
AO = 2√13 - OB
Подставляем это выражение в уравнение для периметра:
36 = (2√13 - OB)^2 + OB^2
36 = 52 - 4√13OB + OB^2 + OB^2
36 = 52 - 4√13OB + 2OB^2
Теперь нам нужно решить это уравнение. Мы знаем, что BD = 7, и так как BD = AO + OB, то:
7 = 2√13 - OB + OB
7 = 2√13
OB = 2√13 - 7
Подставляем это значение обратно в уравнение для периметра:
36 = 52 - 4√13(2√13 - 7) + 2(2√13 - 7)^2
После решения этого уравнения мы найдем периметр треугольника AOB.
0
·
Хороший ответ
28 ноября 2024 11:30
Остались вопросы?
Еще вопросы по категории Геометрия
Найти углы равнобедренного треугольника, если угол, противолежащий основанию равен 133° Помогите пожалуйста!Срочно!...
в сосуде имеющем форму конуса уровень жидкости достигает 1/2 высоты объем жидкости равен 25. сколько миллилитров жидкости нужно долить, чтобы полность...
Дан угол 40 градусов найти углы:1,2,3,4,5,6,7...
Диагональ квадрата равна 10 см. найдите площадь квадрата....
Задание 3. ABCA1B1C1 – наклонная призма, в основании которой лежит правильный треугольник ABC, AB = 63.jpg см. Вершина A1 верхнего основания призмы пр...