Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
11 декабря 2024 21:08
249
В треугольнике ABC точка K на стороне AC, точка P на стороне BC. AP и BK пересекаются в точке O. AK=(1/3)*AC, BP=(2/3)*BC. Площадь треугольника ABC равна S.
Найти:
1) AO/OP
2) BO/OK
3) Площадь треугольника AOK
4) Площадь треугольника BOP
1
ответ
Для решения этой задачи воспользуемся теоремой Менелая.
1) Сначала найдем отношение AO/OP.
Из теоремы Менелая для треугольника ABC с участием точки O получаем:
AK/KB * BP/PC * CO/AO = 1
Подставляем известные значения:
(1/3) / (2/3) * (2/3) / (1/3) * CO/AO = 1
CO/AO = 1
CO = AO
Таким образом, AO = CO = OP.
Отсюда следует, что AO/OP = 1.
2) Теперь найдем отношение BO/OK.
Из теоремы Менелая для треугольника ABC с участием точки O получаем:
AK/KB * BP/PC * CO/OB = 1
Подставляем известные значения:
(1/3) / (2/3) * (2/3) / (1/3) * CO/OB = 1
CO/OB = 1
CO = OB
Таким образом, BO = CO = OK.
Отсюда следует, что BO/OK = 1.
3) Найдем площадь треугольника AOK.
Площадь треугольника AOK равна половине площади треугольника ABC, так как площадь треугольников AOK и BOK равны между собой и каждая из них составляет половину площади ABC.
Таким образом, площадь треугольника AOK равна S/2.
4) Найдем площадь треугольника BOP.
Площадь треугольника BOP также равна S/2, так как площадь треугольников AOK и BOK равны между собой и каждая из них составляет половину площади ABC.
Таким образом, площадь треугольника BOP равна S/2.
Итак, ответы на вопросы:
1) AO/OP = 1
2) BO/OK = 1
3) Площадь треугольника AOK = S/2
4) Площадь треугольника BOP = S/2
1) Сначала найдем отношение AO/OP.
Из теоремы Менелая для треугольника ABC с участием точки O получаем:
AK/KB * BP/PC * CO/AO = 1
Подставляем известные значения:
(1/3) / (2/3) * (2/3) / (1/3) * CO/AO = 1
CO/AO = 1
CO = AO
Таким образом, AO = CO = OP.
Отсюда следует, что AO/OP = 1.
2) Теперь найдем отношение BO/OK.
Из теоремы Менелая для треугольника ABC с участием точки O получаем:
AK/KB * BP/PC * CO/OB = 1
Подставляем известные значения:
(1/3) / (2/3) * (2/3) / (1/3) * CO/OB = 1
CO/OB = 1
CO = OB
Таким образом, BO = CO = OK.
Отсюда следует, что BO/OK = 1.
3) Найдем площадь треугольника AOK.
Площадь треугольника AOK равна половине площади треугольника ABC, так как площадь треугольников AOK и BOK равны между собой и каждая из них составляет половину площади ABC.
Таким образом, площадь треугольника AOK равна S/2.
4) Найдем площадь треугольника BOP.
Площадь треугольника BOP также равна S/2, так как площадь треугольников AOK и BOK равны между собой и каждая из них составляет половину площади ABC.
Таким образом, площадь треугольника BOP равна S/2.
Итак, ответы на вопросы:
1) AO/OP = 1
2) BO/OK = 1
3) Площадь треугольника AOK = S/2
4) Площадь треугольника BOP = S/2
0
·
Хороший ответ
11 декабря 2024 21:09
Остались вопросы?
Еще вопросы по категории Геометрия
Помогите пожалуйста! 1. Прямая PQ параллельна плоскости . От точек P и Q к плоскости проведены ⊥ и ⊥ . Известно, что PQ = = 10,3 см. Определ...
Дан куб ABCDA1B1C1D1. Докажите ,что плоскости ABC1 и A1B1D перпендикулярны...
Как разрезать двумя разрезами пятиугольник на два треугольника и на два пятиугольника...
В треугольнике АВС угол С равен 90 градусов, СН- высота, ВС - 8, ВН=8. Найдите sin A....
Аксиомы геометрии. Аксиома параллельных прямых и свойства из нее вытекающие. Погоите пожалуйста очень срочно...