Лучшие помощники
- Megamozg 2200 б
- Matalya1 1800 б
- DevAdmin 1700 б
- arkasha_bortnikov 890 б
- Dwayne_Johnson 860 б
11 декабря 2024 21:08
57
В треугольнике ABC точка K на стороне AC, точка P на стороне BC. AP и BK пересекаются в точке O. AK=(1/3)*AC, BP=(2/3)*BC. Площадь треугольника ABC равна S.
Найти:
1) AO/OP
2) BO/OK
3) Площадь треугольника AOK
4) Площадь треугольника BOP
1
ответ
Для решения этой задачи воспользуемся теоремой Менелая.
1) Сначала найдем отношение AO/OP.
Из теоремы Менелая для треугольника ABC с участием точки O получаем:
AK/KB * BP/PC * CO/AO = 1
Подставляем известные значения:
(1/3) / (2/3) * (2/3) / (1/3) * CO/AO = 1
CO/AO = 1
CO = AO
Таким образом, AO = CO = OP.
Отсюда следует, что AO/OP = 1.
2) Теперь найдем отношение BO/OK.
Из теоремы Менелая для треугольника ABC с участием точки O получаем:
AK/KB * BP/PC * CO/OB = 1
Подставляем известные значения:
(1/3) / (2/3) * (2/3) / (1/3) * CO/OB = 1
CO/OB = 1
CO = OB
Таким образом, BO = CO = OK.
Отсюда следует, что BO/OK = 1.
3) Найдем площадь треугольника AOK.
Площадь треугольника AOK равна половине площади треугольника ABC, так как площадь треугольников AOK и BOK равны между собой и каждая из них составляет половину площади ABC.
Таким образом, площадь треугольника AOK равна S/2.
4) Найдем площадь треугольника BOP.
Площадь треугольника BOP также равна S/2, так как площадь треугольников AOK и BOK равны между собой и каждая из них составляет половину площади ABC.
Таким образом, площадь треугольника BOP равна S/2.
Итак, ответы на вопросы:
1) AO/OP = 1
2) BO/OK = 1
3) Площадь треугольника AOK = S/2
4) Площадь треугольника BOP = S/2
1) Сначала найдем отношение AO/OP.
Из теоремы Менелая для треугольника ABC с участием точки O получаем:
AK/KB * BP/PC * CO/AO = 1
Подставляем известные значения:
(1/3) / (2/3) * (2/3) / (1/3) * CO/AO = 1
CO/AO = 1
CO = AO
Таким образом, AO = CO = OP.
Отсюда следует, что AO/OP = 1.
2) Теперь найдем отношение BO/OK.
Из теоремы Менелая для треугольника ABC с участием точки O получаем:
AK/KB * BP/PC * CO/OB = 1
Подставляем известные значения:
(1/3) / (2/3) * (2/3) / (1/3) * CO/OB = 1
CO/OB = 1
CO = OB
Таким образом, BO = CO = OK.
Отсюда следует, что BO/OK = 1.
3) Найдем площадь треугольника AOK.
Площадь треугольника AOK равна половине площади треугольника ABC, так как площадь треугольников AOK и BOK равны между собой и каждая из них составляет половину площади ABC.
Таким образом, площадь треугольника AOK равна S/2.
4) Найдем площадь треугольника BOP.
Площадь треугольника BOP также равна S/2, так как площадь треугольников AOK и BOK равны между собой и каждая из них составляет половину площади ABC.
Таким образом, площадь треугольника BOP равна S/2.
Итак, ответы на вопросы:
1) AO/OP = 1
2) BO/OK = 1
3) Площадь треугольника AOK = S/2
4) Площадь треугольника BOP = S/2
0
·
Хороший ответ
11 декабря 2024 21:09
Остались вопросы?
Еще вопросы по категории Геометрия
Найдите длины отрезков BM и DM, если BD 34 см, а отрезок BM на 12 см больше отрезка DM...
Радиус окружности ,вписанной в равносторонний треугольник ,равен 7.найдите высоту этого треугольника....
Диаметр окружности с центром в точке O и радиусом 12 см пересекает хорду MK в точке E и делит хорду пополам. Найдите расстояние от центра окружности д...
Площадь треугольника abc равна 4. de средняя линия. найдите площадь треугольника cde...
квадрат ABCD и трапеция KMNL не лежат в одной плоскости. Точки А и D середины отрезков КМ и NL соответственно. а) доказать KL параллельно ВС Б) найти...
Все предметы