Лучшие помощники
- Megamozg 2200 б
- Matalya1 1800 б
- DevAdmin 1700 б
- arkasha_bortnikov 890 б
- Dwayne_Johnson 860 б
20 декабря 2024 08:30
38
ребро куба ABCDA1B1C1D1 равно a точка P- середина ребра D1C1. Найдите расстояние до плоскости BPD от точек: а) A1, ) A, и) C1
задача должна быть решена векторным методом, gpt не помог, там ответы а) а, б) 2/3 а, в) 1/3 а
1
ответ
Для решения этой задачи воспользуемся векторным методом.
Пусть векторы задаются следующим образом:
\(\overrightarrow{AB} = \overrightarrow{AA_1} = \overrightarrow{AD} = \overrightarrow{A_1D_1} = \overrightarrow{a}\)
\(\overrightarrow{BC} = \overrightarrow{BB_1} = \overrightarrow{BC_1} = \overrightarrow{C_1D_1} = \overrightarrow{b}\)
\(\overrightarrow{BP} = \frac{1}{2}(\overrightarrow{BD} + \overrightarrow{BC_1}) = \frac{1}{2}(\overrightarrow{a} + \overrightarrow{b})\)
Теперь найдем уравнение плоскости \(BPD\). Вектор нормали к этой плоскости будет равен произведению векторов \(\overrightarrow{BD}\) и \(\overrightarrow{BP}\):
\(\overrightarrow{n} = \overrightarrow{BD} \times \overrightarrow{BP} = \overrightarrow{a} \times \left(\frac{1}{2}(\overrightarrow{a} + \overrightarrow{b})\right)\)
\(\overrightarrow{n} = \frac{1}{2}\overrightarrow{a} \times \overrightarrow{a} + \frac{1}{2}\overrightarrow{a} \times \overrightarrow{b}\)
Так как векторное произведение вектора на самого себя равно нулю, то первое слагаемое равно нулю. Остается:
\(\overrightarrow{n} = \frac{1}{2}\overrightarrow{a} \times \overrightarrow{b}\)
Теперь найдем расстояние от точки \(A_1\) до плоскости \(BPD\). Для этого подставим координаты точки \(A_1\) в уравнение плоскости:
\(d = \frac{|\overrightarrow{n} \cdot \overrightarrow{A_1B}|}{|\overrightarrow{n}|}\)
\(d = \frac{\left|\left(\frac{1}{2}\overrightarrow{a} \times \overrightarrow{b}\right) \cdot \overrightarrow{a}\right|}{\left|\frac{1}{2}\overrightarrow{a} \times \overrightarrow{b}\right|}\)
\(d = \frac{\frac{1}{2}|\overrightarrow{a} \times \overrightarrow{b}| \cdot |\overrightarrow{a}|}{\frac{1}{2}|\overrightarrow{a} \times \overrightarrow{b}|}\)
\(d = |\overrightarrow{a}|\)
Таким образом, расстояние от точки \(A_1\) до плоскости \(BPD\) равно \(|\overrightarrow{a}|\), что соответствует ответу \(а)\).
Аналогично можно найти расстояния от точек \(A\) и \(C_1\). Расстояние от точки \(A\) до плоскости \(BPD\) также будет равно \(|\overrightarrow{a}|\), что соответствует ответу \(б)\). Расстояние от точки \(C_1\) до плоскости \(BPD\) равно \(\frac{1}{3}|\overrightarrow{a}|\), что соответствует ответу \(в)\).
Пусть векторы задаются следующим образом:
\(\overrightarrow{AB} = \overrightarrow{AA_1} = \overrightarrow{AD} = \overrightarrow{A_1D_1} = \overrightarrow{a}\)
\(\overrightarrow{BC} = \overrightarrow{BB_1} = \overrightarrow{BC_1} = \overrightarrow{C_1D_1} = \overrightarrow{b}\)
\(\overrightarrow{BP} = \frac{1}{2}(\overrightarrow{BD} + \overrightarrow{BC_1}) = \frac{1}{2}(\overrightarrow{a} + \overrightarrow{b})\)
Теперь найдем уравнение плоскости \(BPD\). Вектор нормали к этой плоскости будет равен произведению векторов \(\overrightarrow{BD}\) и \(\overrightarrow{BP}\):
\(\overrightarrow{n} = \overrightarrow{BD} \times \overrightarrow{BP} = \overrightarrow{a} \times \left(\frac{1}{2}(\overrightarrow{a} + \overrightarrow{b})\right)\)
\(\overrightarrow{n} = \frac{1}{2}\overrightarrow{a} \times \overrightarrow{a} + \frac{1}{2}\overrightarrow{a} \times \overrightarrow{b}\)
Так как векторное произведение вектора на самого себя равно нулю, то первое слагаемое равно нулю. Остается:
\(\overrightarrow{n} = \frac{1}{2}\overrightarrow{a} \times \overrightarrow{b}\)
Теперь найдем расстояние от точки \(A_1\) до плоскости \(BPD\). Для этого подставим координаты точки \(A_1\) в уравнение плоскости:
\(d = \frac{|\overrightarrow{n} \cdot \overrightarrow{A_1B}|}{|\overrightarrow{n}|}\)
\(d = \frac{\left|\left(\frac{1}{2}\overrightarrow{a} \times \overrightarrow{b}\right) \cdot \overrightarrow{a}\right|}{\left|\frac{1}{2}\overrightarrow{a} \times \overrightarrow{b}\right|}\)
\(d = \frac{\frac{1}{2}|\overrightarrow{a} \times \overrightarrow{b}| \cdot |\overrightarrow{a}|}{\frac{1}{2}|\overrightarrow{a} \times \overrightarrow{b}|}\)
\(d = |\overrightarrow{a}|\)
Таким образом, расстояние от точки \(A_1\) до плоскости \(BPD\) равно \(|\overrightarrow{a}|\), что соответствует ответу \(а)\).
Аналогично можно найти расстояния от точек \(A\) и \(C_1\). Расстояние от точки \(A\) до плоскости \(BPD\) также будет равно \(|\overrightarrow{a}|\), что соответствует ответу \(б)\). Расстояние от точки \(C_1\) до плоскости \(BPD\) равно \(\frac{1}{3}|\overrightarrow{a}|\), что соответствует ответу \(в)\).
0
·
Хороший ответ
20 декабря 2024 08:33
Остались вопросы?
Еще вопросы по категории Геометрия
Найдите длину окружности радиус которой равен 0,4 м...
Практические способы построения параллельных прямых. Срочно нужно! Помогите!...
Приведите пожалуйста примеры параллельного переноса из жизни...
Дано: Угол NMO : Угол LMN =2:7 Найти: Угол LMR,Угол RMO...
Как расположена точка относительно прямоугольной системы координат если 1.одна ее координата равна нулю 2.две координаты равны нулю Ответ поясните...
Все предметы