Лучшие помощники
30 ноября 2022 06:50
4463

1 Сформулируйте и докажите теорему о сумме углов треугольника.2 Какой угол называется внешним углом треугольника? Докажите, что внешний угол треугольника равен сумме двух углов треугольника, не смежных с ним

.3 Докажите, что в любом треугольнике либо все углы острые, либо два угла острые, а третий тупой или прямой.

4 Какой треугольник называют остроугольным? Какой треугольник называется тупоугольным?

5 Какой треугольник называется прямоугольным? Как называются стороны прямоугольного треугольника?

6 Докажите, что в треугольнике:
1) против большей стороны лежит больший угол;
2) обратно, против большего угла лежит большая сторона.

7 Докажите, что в прямоугольном треугольнике гипотенуза больше катета.

8Докажите, что в прямоугольном треугольнике гипотенуза больше катета.

9Докажите, что каждая сторона треугольника меньше суммы двух других сторон. Что такое неравенство треугольника?

10Докажите, что сумма двух острых углов прямоугольного треугольника равна 90°.

11Докажите, что катет прямоугольного треугольника, лежащий против угла в 30°, равен половине гипотенузы. Сформулируйте и докажите обратное утверждение.

1 ответ
Посмотреть ответы
1) Сумма углов треугольника равна 180°.

Доказательство

Пусть ABC' — произвольный треугольник. Проведем через вершину B прямую, параллельную прямой AC (такая прямая называется прямой Евклида) . Отметим на ней точку D так, чтобы точки A и D лежали по разные стороны прямой BC.Углы DBC и ACB равны как внутренние накрест лежащие, образованные секущей BC с параллельными прямыми AC и BD. Поэтому сумма углов треугольника при вершинах B и С равна углу ABD.Сумма всех трех углов треугольника равна сумме углов ABD и BAC. Так как эти углы внутренние односторонние для параллельных AC и BD при секущей AB, то их сумма равна 180°. Теорема доказана.
2)
Внешним углом треугольника при данной вершине называется угол, смежный с углом треугольника при этой вершине.

Теорема: Внешний угол треугольника равен сумме двух углов треугольника, не смежных с ним

Доказательство. Пусть ABC – данный треугольник. По теореме о сумме углов в треугольнике
∠ ABС + ∠ BCA + ∠ CAB = 180 º.
Отсюда следует
∠ ABС + ∠ CAB = 180 º - ∠ BCA = ∠ BCD
Теорема доказана.

Из теоремы следует:
Внешний угол треугольника больше любого угла треугольника, не смежного с ним.
3)
Сумма углов треугольника = 180 градусов. Если один из углов прямой (90 градусов) на два остальных приходится тоже 90. значит, каждый из них - меньше 90 то есть они - острые. если один из углов - тупой, то на два остальных приходится менее 90 то есть они явно острые.
4)
тупоугольный - больше 90 градусов
остроугольный - меньше 90 градусов
5) а. Треугольник, у которого один из углов равен 90 градусов.
б. Катеты и гипотенуза
6)
6°. В каждом треугольнике против большей стороны лежит больший угол и обратно: против большего угла лежит большая сторона. Любой отрезок имеет одну и только одну середину.
7)
По теореме Пифагора: квадрат гипотенузы равен сумме квадратов катетов, значит гипотенуза больше каждого из катетов
8) --- тоже самое, что и 7
9)
сумма углов треугольника равно 180 градусов. а если бы аждая сторона треугольника была бы больше суммы двух других сторонон, то сумма углов была бы больше 180, что невозможно. следовательно - каждая сторона треугольника меньше суммы двух других сторон.
10)
Сумма углов любого треугольника равна 180 градусам.
Т. к. этот треугольник прямоугольный, то один из углов у него прямой, т. е. равен 90 градусам.
Следовательно, сумма двух других острых углов равна 180-90=90 градусов.
11)
1. рассмотрим прямоугольный треугольник ABC в которм угол А - прямой, угол В = 30 градусам а угол С = 60.Приложим к треугольнику АВС равный ему треугольник АВD. Получим треугольни BCD в котором угол B = углу D = 60 градусов, следовательно DC = BC. Но по построению АС 1/2 ВС, что и требовалось доказать.2. Если катет прямоугольного треугольника равен половине гипотенузы, то угол, лежащий против этого катета равен 30 градусам.докажем это.рассмотрим прямоугольный треугольник АВC, у которого катет АС равен половине гипотенузы АС.Приложим к треугольнику АВС равный ему треугольник ABD. Получит равносторонний треугольник BCD. Углы равностороннего треугольника равны друг другу(т.к. против равных строн лежат равные углы), поэтому каждый из них = 60 градусам. Но угол DBC = 2 угла ABC, следовательно угол АВС = 30 градусов,что и требовалось доказать.
0
·
Хороший ответ
2 декабря 2022 06:50
Остались вопросы?
Найти нужный