Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
6 декабря 2022 18:29
3122
боковая сторона равнобедренного треугольника равна 10 см, а высота проведенная к основанию 5√3 см см,найти углы треугольника
1
ответ
Способ 1.
Из прямоугольного треугольника ВАН:
sin ВАН = BH/AB = 5√3/10 = √3/2
Значит ∠ВАН = 60°.
∠ВСА = ∠ВАС = 60° как углы при основании равнобедренного треугольника.
∠АВС = 180° - 2·60° = 60°
Ответ: все углы треугольника по 60°.
Способ 2.
Из прямоугольного треугольника АВН по теореме Пифагора:
АН = √(АВ² - ВН²) = √(100 - 25·3) = √(100 - 75) = √25 = 5 см
Катет АН равен половине гипотенузы АВ, значит ∠АВН = 30°.
В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой, тогда ∠АВС = 60°.
∠ВАС = ∠ВСА = (180° - 60°)/2 = 60°
Ответ: все углы треугольника по 60°.
Из прямоугольного треугольника ВАН:
sin ВАН = BH/AB = 5√3/10 = √3/2
Значит ∠ВАН = 60°.
∠ВСА = ∠ВАС = 60° как углы при основании равнобедренного треугольника.
∠АВС = 180° - 2·60° = 60°
Ответ: все углы треугольника по 60°.
Способ 2.
Из прямоугольного треугольника АВН по теореме Пифагора:
АН = √(АВ² - ВН²) = √(100 - 25·3) = √(100 - 75) = √25 = 5 см
Катет АН равен половине гипотенузы АВ, значит ∠АВН = 30°.
В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой, тогда ∠АВС = 60°.
∠ВАС = ∠ВСА = (180° - 60°)/2 = 60°
Ответ: все углы треугольника по 60°.

0
·
Хороший ответ
8 декабря 2022 18:29
Остались вопросы?
Еще вопросы по категории Геометрия
решите пожалуйста...
Основанием пирамиды является параллелограмм, стороны которого равны 20 см и 36 см, а площадь равна 360 см^2. Высота пирамиды проходит через точку пере...
на сторонах угла ВАС и на его биссектрисе отложены равные отрезки АВ, АС и АD. Величина угла ВDС равна 160 градусов. Определите величину угла ВАС...
Геометрия 7 класс. Отрезки АС и ВД пересекаются. Докажите, что АВ+СД<АС+ВД помогите решить, пожалуйста....
Окружность вписана в четырехугольник со сторонами 7, 9, 13, x (см. рис. 119). Найдите величину стороны x....