Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
6 декабря 2022 18:29
3050
боковая сторона равнобедренного треугольника равна 10 см, а высота проведенная к основанию 5√3 см см,найти углы треугольника
1
ответ
Способ 1.
Из прямоугольного треугольника ВАН:
sin ВАН = BH/AB = 5√3/10 = √3/2
Значит ∠ВАН = 60°.
∠ВСА = ∠ВАС = 60° как углы при основании равнобедренного треугольника.
∠АВС = 180° - 2·60° = 60°
Ответ: все углы треугольника по 60°.
Способ 2.
Из прямоугольного треугольника АВН по теореме Пифагора:
АН = √(АВ² - ВН²) = √(100 - 25·3) = √(100 - 75) = √25 = 5 см
Катет АН равен половине гипотенузы АВ, значит ∠АВН = 30°.
В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой, тогда ∠АВС = 60°.
∠ВАС = ∠ВСА = (180° - 60°)/2 = 60°
Ответ: все углы треугольника по 60°.
Из прямоугольного треугольника ВАН:
sin ВАН = BH/AB = 5√3/10 = √3/2
Значит ∠ВАН = 60°.
∠ВСА = ∠ВАС = 60° как углы при основании равнобедренного треугольника.
∠АВС = 180° - 2·60° = 60°
Ответ: все углы треугольника по 60°.
Способ 2.
Из прямоугольного треугольника АВН по теореме Пифагора:
АН = √(АВ² - ВН²) = √(100 - 25·3) = √(100 - 75) = √25 = 5 см
Катет АН равен половине гипотенузы АВ, значит ∠АВН = 30°.
В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой, тогда ∠АВС = 60°.
∠ВАС = ∠ВСА = (180° - 60°)/2 = 60°
Ответ: все углы треугольника по 60°.

0
·
Хороший ответ
8 декабря 2022 18:29
Остались вопросы?
Еще вопросы по категории Геометрия
∆KLM-равнобедренный прямоугольный треугольник, около которого описана окружность;меньшая высота треугольника OK=8,59 см. ((ПОМОГИТЕ ПОЖАЛУЙСТА ДАЮ 48...
Что такое абсолютная величина вектора?...
2. В параллелограмме ABCD точка Е- середина стороны BC, AB=6 дм, ZEAD = 30º, Найдите периметр параллелограмма....
куб и прямоугольный параллелепипед имеют одинаковую сумму длин всех ребер, равную 72 см. Длина параллелепипеда в 3 раза больше высоты, а ширина в 2 ра...
Дана восьмиугольная пирамида. Сколько у нее граней?...