Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
6 декабря 2022 18:34
1621
В трапеции ABCD c основаниями AD и BC диагонали пересекаются в точке О. Докажите , что площади треугольников AOB и COD равны.
1
ответ
Пусть AD - нижнее основание AD<BC
S(ABD)=S(ACD) - так как у єтих треугольников общее основание AD, а высоты треугольников, проведенные к основанию, являются высотами трапеции и потому равны.
S(AOB)=S(ABD)-S(AOD)
S(COD)=S(ACD)-S(AOD)
поєтому
S(AOB)=S(COD). Доказано
S(ABD)=S(ACD) - так как у єтих треугольников общее основание AD, а высоты треугольников, проведенные к основанию, являются высотами трапеции и потому равны.
S(AOB)=S(ABD)-S(AOD)
S(COD)=S(ACD)-S(AOD)
поєтому
S(AOB)=S(COD). Доказано

0
·
Хороший ответ
8 декабря 2022 18:34
Остались вопросы?
Еще вопросы по категории Геометрия
Найдите высоту правильной четырехугольной пирамиды SABCD все ребра которой равны 1...
Помогите срочно...
диагонали квадрата abcd пересекаются в точке 0. SO- перпендикуляр к плоскости квадрата, SO= 4 корня из 2 см а) докажите равенство углов,образуемых пря...
диагональ прямоугольника ABCD пересекается в точке О, LABO = 37°. Найдите угол AOD....
Найти углы треугольника с вершинами А(6;7),В(3;3),С(1;-5).11 класс.Помогите пожалуйста...