Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
6 декабря 2022 18:34
1589
В трапеции ABCD c основаниями AD и BC диагонали пересекаются в точке О. Докажите , что площади треугольников AOB и COD равны.
1
ответ
Пусть AD - нижнее основание AD<BC
S(ABD)=S(ACD) - так как у єтих треугольников общее основание AD, а высоты треугольников, проведенные к основанию, являются высотами трапеции и потому равны.
S(AOB)=S(ABD)-S(AOD)
S(COD)=S(ACD)-S(AOD)
поєтому
S(AOB)=S(COD). Доказано
S(ABD)=S(ACD) - так как у єтих треугольников общее основание AD, а высоты треугольников, проведенные к основанию, являются высотами трапеции и потому равны.
S(AOB)=S(ABD)-S(AOD)
S(COD)=S(ACD)-S(AOD)
поєтому
S(AOB)=S(COD). Доказано

0
·
Хороший ответ
8 декабря 2022 18:34
Остались вопросы?
Еще вопросы по категории Геометрия
На рисунке 64 точка О — центр окружности, MON=56°. Найдите угол MKN....
Бывает ли развернутый треугольник...
На рисунке 26 углы, обозначенные цифпами, равны. укажите : а) биссектрису каждогоиз углов AOC, BOF, AOE; б) все углы, биссектрисой которых являестя лу...
В треугольнике АВС угол С равен 90 градусов, СН- высота, ВС - 8, ВН=8. Найдите sin A....
Помогите пожалуйста...