Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 865 б
6 декабря 2022 18:34
1536
В трапеции ABCD c основаниями AD и BC диагонали пересекаются в точке О. Докажите , что площади треугольников AOB и COD равны.
1
ответ
Пусть AD - нижнее основание AD<BC
S(ABD)=S(ACD) - так как у єтих треугольников общее основание AD, а высоты треугольников, проведенные к основанию, являются высотами трапеции и потому равны.
S(AOB)=S(ABD)-S(AOD)
S(COD)=S(ACD)-S(AOD)
поєтому
S(AOB)=S(COD). Доказано
S(ABD)=S(ACD) - так как у єтих треугольников общее основание AD, а высоты треугольников, проведенные к основанию, являются высотами трапеции и потому равны.
S(AOB)=S(ABD)-S(AOD)
S(COD)=S(ACD)-S(AOD)
поєтому
S(AOB)=S(COD). Доказано

0
·
Хороший ответ
8 декабря 2022 18:34
Остались вопросы?
Еще вопросы по категории Геометрия
ПОСТРОИТЬ УГОЛ РАВНЫЙ 105 ГРАДУСАМ ПРИ ПОМОЩИ ЦИРКУЛЯ И ЛИНЕЙКИ....
Треугольник А'В'С' получен с помощью параллельного переноса треугольника АВС на вектор ВС. Сравните периметры треугольников АВС и А'В'С'...
проведите прямую , обозначьте её буквой а и отметьте точку а и в лежащие на этой прямой и точки p Q и R не лежащий на ней. опишите взаимное расположен...
Определение многогранника,его элементы,примеры....
Напишите уравнение прямой, проходящей через точки M(3;5) и N(-6;1) С решением....