Лучшие помощники
- Megamozg 2200 б
- Matalya1 1800 б
- DevAdmin 1705 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 860 б
6 декабря 2022 18:34
1465
В трапеции ABCD c основаниями AD и BC диагонали пересекаются в точке О. Докажите , что площади треугольников AOB и COD равны.
1
ответ
Пусть AD - нижнее основание AD<BC
S(ABD)=S(ACD) - так как у єтих треугольников общее основание AD, а высоты треугольников, проведенные к основанию, являются высотами трапеции и потому равны.
S(AOB)=S(ABD)-S(AOD)
S(COD)=S(ACD)-S(AOD)
поєтому
S(AOB)=S(COD). Доказано
S(ABD)=S(ACD) - так как у єтих треугольников общее основание AD, а высоты треугольников, проведенные к основанию, являются высотами трапеции и потому равны.
S(AOB)=S(ABD)-S(AOD)
S(COD)=S(ACD)-S(AOD)
поєтому
S(AOB)=S(COD). Доказано
0
·
Хороший ответ
8 декабря 2022 18:34
Остались вопросы?
Еще вопросы по категории Геометрия
Решить треугольник ABC. Если угол А=45 градусов,Угол В=75 градусов,АВ=2 и корень из 3...
Обчисліть 10 sin 30° + 4 cos 120° − √3 tg 60°...
1)Докажите, что углы при основании равнобедренного треугольника равны. 2) Объясните, какой отрезок называется перпендикуляром, проведённым из данной т...
Помогите пожалуйста! Площадь правильного шестиугольника АBCDEF равна 144.Нужно найти площадь треугольника АВС (8бал)....
Найдите координаты вершины B параллелограмма ABCD, если A (3; −2), C (9; 8), D (−4; −5)....
Все предметы