Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 860 б
log₂(x² - 3x) = 2
x · (x - 3) > 0
x ∈ (-∞; 0) U (3; +∞)
x² - 3x = 4
x² - 3x - 4 = 0
D = b² - 4ac = 9 + 16 = 25 = 5²
x₁₂ = (3 ± 5) / 2 = 4; -1
log₂(x² - 3x) = log₂(1² - 3 · (-1)) = log₂(1 + 3) = log₂4 = 2
D(y)
x² - 3x > 0x · (x - 3) > 0
x ∈ (-∞; 0) U (3; +∞)
Решение
log₂(x² - 3x) = log₂4x² - 3x = 4
x² - 3x - 4 = 0
D = b² - 4ac = 9 + 16 = 25 = 5²
x₁₂ = (3 ± 5) / 2 = 4; -1
Проверка
log₂(x² - 3x) = log₂(4² - 3 · 4) = log₂(16 - 12) = log₂4 = 2log₂(x² - 3x) = log₂(1² - 3 · (-1)) = log₂(1 + 3) = log₂4 = 2
Ответ
4; -10
·
Хороший ответ
8 декабря 2022 20:33
Остались вопросы?
Еще вопросы по категории Алгебра
Найдите сумму всех натуральных чисел, кратных 7 и не превышающих 150....
Решите уравнение: tg(pix/4)=-1. В ответ запишите наибольший отрицательный корень....
Замените выражение равным ему так, чтобы перед дробью не было знака "минус" (ФОТО ПРИЛОЖЕНО) упр 33 б) г)...
Решите уравнение sin3x+cos3x=0. Найдите корни из отрезка [-Pi/2 ; Pi ]...
скорость пассажирского поезда 60 км/ч а товарного 40 км/ч . Найти расстояние между двумя пунктами если пассажирский поезд проходит это расстояние быст...