Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
10 декабря 2022 12:20
697
Найти площадь сегмента круга,если R=6см,а центральный угол 120градусов ,и сделайте пожалуйста чертёж
1
ответ
Для нахождения площади сегмента круга есть формула, - она дана в приложении, но мы можем вывести её сами, немного порассуждав.
Площадь круга S=πR²
Круг содержит 360° ⇒Площадь сектора круга в 1°=πR²:360
Площадь сектора с центральным углом α будет больше во столько раз, во сколько α больше 1.
Sсект=πR²•α:360°
Площадь сегмента АОС равна площади сектора АОС минус площадь треугольника АОС.
S ∆ AOC=AO•CO•sinα:2=R²•sinα:2 ( по одной из формул площади треугольника)
Вычитаем:
Sсегм. = πR²•α:360° - R²•sinα:2
Выносим за скобки R²1/2
Sсегм=R²•1/2•[(π•α:180°-sinα)]
Sсегм=(36:2)•[π•120°:180°-√3/2]
Sсегм=18•(3,14•120°:180°- √3/2)=18•[(3,14•2/3)-√3/2]
S сегм=18•(2,09- 0,866)= 18•1,224= ≈22,032 см²
Площадь круга S=πR²
Круг содержит 360° ⇒Площадь сектора круга в 1°=πR²:360
Площадь сектора с центральным углом α будет больше во столько раз, во сколько α больше 1.
Sсект=πR²•α:360°
Площадь сегмента АОС равна площади сектора АОС минус площадь треугольника АОС.
S ∆ AOC=AO•CO•sinα:2=R²•sinα:2 ( по одной из формул площади треугольника)
Вычитаем:
Sсегм. = πR²•α:360° - R²•sinα:2
Выносим за скобки R²1/2
Sсегм=R²•1/2•[(π•α:180°-sinα)]
Sсегм=(36:2)•[π•120°:180°-√3/2]
Sсегм=18•(3,14•120°:180°- √3/2)=18•[(3,14•2/3)-√3/2]
S сегм=18•(2,09- 0,866)= 18•1,224= ≈22,032 см²

0
·
Хороший ответ
12 декабря 2022 12:20
Остались вопросы?
Еще вопросы по категории Геометрия
Радиус окружности, вписанной в правильный треугольник, равен 4√3см. Найдите периметр и площадь этого треугольника....
Помогите :( Площадь треугольника ABC равна 28. DE - средняя линия. Найдите площадь трапеции ABDE....
В окружность вписан треугольник ABC. Известно, что ∠A=52°,∠B=68° и AB=5√3. Найди радиус данной окружности....
Диагонали ромба равны 14 см и 48 см. Найдите стороны....
Радиус окружности описанной около квадрата равен 36 √ 2 найдите длину стороны этого квадрата...