Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 865 б
10 декабря 2022 12:30
1105
На рисунке 62 прямая ВС касается окружности с центром О в точке В. Найдите угол АОВ , если АВС= 63

2
ответа
Ответ:
∠AOB=126°
Объяснение:
По условию прямая BC касается окружности с центром O в точке B, что означает по определению касательной: прямая BC касательная к окружности.
По свойству касательной к окружности:
Касательная перпендикулярна радиусу, проведенному в точку касания.
Тогда ∠OBC = 90°, и следовательно ∠OBA = 90° - 63° = 27°.
Рассмотрим треугольник OBA с основанием AB. Так как стороны OA и OB треугольника являются радиусами, то ΔOBA равнобедренный. По свойству равнобедренного треугольника углы при основании равны, то есть ∠OAB = ∠OBA = 27°.
Сумма внутренних углов треугольника 180°:
∠OBA + ∠OAB + ∠AOB = 180°.
Отсюда
∠AOB = 180° - ∠OBA - ∠OAB = 180° - 27° - 27° = 126°.
∠AOB=126°
Объяснение:
По условию прямая BC касается окружности с центром O в точке B, что означает по определению касательной: прямая BC касательная к окружности.
По свойству касательной к окружности:
Касательная перпендикулярна радиусу, проведенному в точку касания.
Тогда ∠OBC = 90°, и следовательно ∠OBA = 90° - 63° = 27°.
Рассмотрим треугольник OBA с основанием AB. Так как стороны OA и OB треугольника являются радиусами, то ΔOBA равнобедренный. По свойству равнобедренного треугольника углы при основании равны, то есть ∠OAB = ∠OBA = 27°.
Сумма внутренних углов треугольника 180°:
∠OBA + ∠OAB + ∠AOB = 180°.
Отсюда
∠AOB = 180° - ∠OBA - ∠OAB = 180° - 27° - 27° = 126°.
0
12 декабря 2022 12:30
Остались вопросы?
Еще вопросы по категории Геометрия
Постройте угол,тангенс которого равен 1 Помогите пжж...
Через каждую из двух скрещивающихся прямых можно провести плоскость так, чтобы эти плоскости были параллельны. Доказать...
В правильной шестиугольной призме ABCDEFA1B1C1D1E1F1 все ребра равны 6.Найдите расстояние между точками A и С1...
В треугольнике ABC, AB=BC=61, АС =22 найдите длину медианы ВМ...
В треугольнике ABC AC=10, BC=24, угол C=90 градусов. Найдите радиус описанной окружности этого треугольника...