Лучшие помощники
10 декабря 2022 14:30
1280

Через вершину В квадрата ABCD проведена прямая BF, перпендикулярная к его плоскости. Найдите расстояния от точки F до прямых, содержащих стороны и диагонали квадрата, если BF = 8 дм, АВ = 4 дм.

1 ответ
Посмотреть ответы
См. рисунок в приложении
наклонная FA⊥ AD , так как её проекция ВА⊥AD
наклонная FO⊥AC , так как её проекция ВО ⊥ AC ( BD⊥AC- диагонали квадрата взаимно перпендикулярны)

По теореме Пифагора диагональ квадрата АС=√(4²+4²)=4√2
Диагонали квадрата в точке пересечения делятся пополам
АО=ОС=ВО=ОD=2√2

По теореме Пифагора из Δ AFB
AF²=AB²+FB²=4²+8²=16+64=80
AF=√80=4√5
Аналогично расстояние FC до стороны CD равно 4√5

По теореме Пифагора из Δ FBO
FO²=AO²+FB²=(2√2)²+8²=8+64=72
FO=√72=6√2

Расстояние до стороны АВ; ВС и диагонали BD равно FB=8
image
0
·
Хороший ответ
12 декабря 2022 14:30
Остались вопросы?
Найти нужный