Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
10 декабря 2022 23:47
2083
Биссектрисы равностороннего треугольника равна 13 корней из 3 найдите его сторону
1
ответ
В равностороннем треугольнике биссектриса является и высотой, и медианой.
В прямоугольном треугольнике, образованном этой биссектрисой, половиной стороны и стороной равностороннего треугольника
а - гипотенуза (и она же сторона равностороннего треугольника)
а/2 - катет (половина основания равностороннего треугольника)
h - катет (он же высота или биссектриса равностороннего треугольника)
По теореме Пифагора
а² = (a/2)² + h²
a² - a²/4 = h²
3/4 * a² = h²
a² = 4/3*h²
a² = 4/3 * (13√3)² = 4/3 * 169 * 3 = 676
a = √676 = 26
Ответ: а = 26
В прямоугольном треугольнике, образованном этой биссектрисой, половиной стороны и стороной равностороннего треугольника
а - гипотенуза (и она же сторона равностороннего треугольника)
а/2 - катет (половина основания равностороннего треугольника)
h - катет (он же высота или биссектриса равностороннего треугольника)
По теореме Пифагора
а² = (a/2)² + h²
a² - a²/4 = h²
3/4 * a² = h²
a² = 4/3*h²
a² = 4/3 * (13√3)² = 4/3 * 169 * 3 = 676
a = √676 = 26
Ответ: а = 26
0
·
Хороший ответ
12 декабря 2022 23:47
Остались вопросы?
Еще вопросы по категории Геометрия
Найдите скалярное произведение векторов a и b , если вектор |a|=14, |b|=9, ∠(a;b)=60градусов ...
Дан тетраэдр ABCD. Точка M - середина ребра DC, точка K - середина ребра AD. постройте сечение тетраэдра плоскостью, содержащей точку K и параллельной...
Найдите тангенс угла А треугольника ABC, изображённого на рисунке....
Сколько граней, ребер и вершин имеет параллелепипед...
Основанием прямого параллелепипеда ABCDA₁B₁C₁D₁ является параллелограмм ABCD, стороны которого равны а*корень из 2 и 2а, острый угол равен 45°. Высо...