Лучшие помощники
- Megamozg 2190 б
- Matalya1 1800 б
- DevAdmin 1695 б
- arkasha_bortnikov 860 б
- Dwayne_Johnson 845 б
14 декабря 2022 21:20
705
Диагональ прямоугольного параллелепипеда равна 10 корней из двух (см) и образует с плоскостью основания 45 градусов.Найти объем параллелепипеда,если одна сторона основания на 2см больше другой.
1
ответ
Все грани прямоугольного параллелепипеда - прямоугольники. ВВ₁⊥(АВС)⇒
BD - проекция диагонали В₁D на плоскость основания. Тогда ∠В₁DB = 45°.
ΔВ₁DB прямоугольный и, значит, равнобедренный.
BD = BВ₁ = В₁D/√2 = 10 cм
ΔABD:
∠BAD = 90°. Пусть АВ = х, тогда AD = х + 2. По теореме Пифагора
BD² = AB² + AD²
100 = x² + (x + 2)²
2x² + 4x - 96 = 0
x² + 2x - 48 = 0
x = 6 или х = - 8 по теореме Виета
По смыслу задачи подходит х = 6
АВ = 6 см, AD = 8 см.
V = AB · AD · AA₁ = 6 · 8 · 10 = 480 cм³
BD - проекция диагонали В₁D на плоскость основания. Тогда ∠В₁DB = 45°.
ΔВ₁DB прямоугольный и, значит, равнобедренный.
BD = BВ₁ = В₁D/√2 = 10 cм
ΔABD:
∠BAD = 90°. Пусть АВ = х, тогда AD = х + 2. По теореме Пифагора
BD² = AB² + AD²
100 = x² + (x + 2)²
2x² + 4x - 96 = 0
x² + 2x - 48 = 0
x = 6 или х = - 8 по теореме Виета
По смыслу задачи подходит х = 6
АВ = 6 см, AD = 8 см.
V = AB · AD · AA₁ = 6 · 8 · 10 = 480 cм³
0
·
Хороший ответ
16 декабря 2022 21:20
Остались вопросы?
Еще вопросы по категории Геометрия
Какие из данных утверждений верны? Запишите их номера. 1)Если две стороны одного треугольника соответственно равны двум сторонам другого треугольника,...
Найдите площадь прямоугольного треугольника, если биссектриса прямого угла делит гипотенузу на отрезки длинной 15 и 20...
Помогите пожалуйста с этой геометрией)))))) Сторона AB ромба ABCD равна а,один из углов равен 60 градусов.Через сторону AB проведена плоскость альфа н...
Диаметр основания конуса равен 6, а угол при вершине осевого сечения равен 90°. Вычислите объем конуса, деленный на π....
Сторона основания правильной треугольной пирамиды равна 6, а её боковое ребро образует с плоскостью основания угол 45. Найти объём пирамиды...
Все предметы