Лучшие помощники
- Megamozg 2180 б
- Matalya1 1800 б
- DevAdmin 1690 б
- arkasha_bortnikov 840 б
- Dwayne_Johnson 840 б
15 декабря 2022 22:17
423
Помогите решить методом Гаусса( только не через калькулятор)
1
ответ
Ответ:
Матричный вид записи: Ax=b, где
A=
2
0
2
2
3
0
2
2
4
9
2
2
0
4
3
3
5
5
2
9
0
3
0
2
3
, b=
3
1
1
3
3
Для решения системы, построим расширенную матрицу:
2
0
2
2
3
3
0
2
2
4
9
1
2
2
0
4
3
1
3
5
5
2
9
3
0
3
0
2
3
3
Обозначим через aij элементы i-ой строки и j-ого столбца.
Первый этап. Прямой ход Гаусса.
Исключим элементы 1-го столбца матрицы ниже элемента a1,1. Для этого сложим строки 3,4 со строкой 1, умноженной на -1,-3/2 соответственно:
2
0
2
2
3
3
0
2
2
4
9
1
0
2
−2
2
0
−2
0
5
2
−1
9
2
−
3
2
0
3
0
2
3
3
Исключим элементы 2-го столбца матрицы ниже элемента a2,2. Для этого сложим строки 3,4,5 со строкой 2, умноженной на -1,-5/2,-3/2 соответственно:
2
0
2
2
3
3
0
2
2
4
9
1
0
0
−4
−2
−9
−3
0
0
−3
−11
−18
−4
0
0
−3
−4
−
21
2
3
2
Исключим элементы 3-го столбца матрицы ниже элемента a3,3. Для этого сложим строки 4,5 со строкой 3, умноженной на -3/4,-3/4 соответственно:
2
0
2
2
3
3
0
2
2
4
9
1
0
0
−4
−2
−9
−3
0
0
0
−
19
2
−
45
4
−
7
4
0
0
0
−
5
2
−
15
4
15
4
Исключим элементы 4-го столбца матрицы ниже элемента a4,4. Для этого сложим строку 5 со строкой 4, умноженной на -5/19:
2
0
2
2
3
3
0
2
2
4
9
1
0
0
−4
−2
−9
−3
0
0
0
−
19
2
−
45
4
−
7
4
0
0
0
0
−
15
19
80
19
Делим каждую строку матрицы на соответствующий ведущий элемент (если ведущий элемент существует):
1
0
1
1
3
2
3
2
0
1
1
2
9
2
1
2
0
0
1
1
2
9
4
3
4
0
0
0
1
45
38
7
38
0
0
0
0
1
−
16
3
Из расширенной матрицы восстановим систему линейных уравнений:
1 x1
+
0 x2
+
1 x3
+
1 x4
+
3
2
x5
=
3
2
0 x1
+
1 x2
+
1 x3
+
2 x4
+
9
2
x5
=
1
2
0 x1
+
0 x2
+
1 x3
+
1
2
x4
+
9
4
x5
=
3
4
0 x1
+
0 x2
+
0 x3
+
1 x4
+
45
38
x5
=
7
38
0 x1
+
0 x2
+
0 x3
+
0 x4
+
1 x5
=
−
16
3
Базисные переменные x1, x2, x3, x4, x5.
Имеем:
x1=
3
2
−1
· x3
−1
· x4
−
3
2
· x5
x2=
1
2
−1
· x3
−2
· x4
−
9
2
· x5
x3=
3
4
−
1
2
· x4
−
9
4
· x5
x4=
7
38
−
45
38
· x5
x5=
−
16
3
Подставив нижние выражения в верхние, получим решение.
x1=
−
13
2
x2=
2
x3=
19
2
x4=
13
2
x5=
−
16
3
Решение в векторном виде:
x=
x1
x2
x3
x4
x5
=
−
13
2
2
19
2
13
2
−
16
3
Матричный вид записи: Ax=b, где
A=
2
0
2
2
3
0
2
2
4
9
2
2
0
4
3
3
5
5
2
9
0
3
0
2
3
, b=
3
1
1
3
3
Для решения системы, построим расширенную матрицу:
2
0
2
2
3
3
0
2
2
4
9
1
2
2
0
4
3
1
3
5
5
2
9
3
0
3
0
2
3
3
Обозначим через aij элементы i-ой строки и j-ого столбца.
Первый этап. Прямой ход Гаусса.
Исключим элементы 1-го столбца матрицы ниже элемента a1,1. Для этого сложим строки 3,4 со строкой 1, умноженной на -1,-3/2 соответственно:
2
0
2
2
3
3
0
2
2
4
9
1
0
2
−2
2
0
−2
0
5
2
−1
9
2
−
3
2
0
3
0
2
3
3
Исключим элементы 2-го столбца матрицы ниже элемента a2,2. Для этого сложим строки 3,4,5 со строкой 2, умноженной на -1,-5/2,-3/2 соответственно:
2
0
2
2
3
3
0
2
2
4
9
1
0
0
−4
−2
−9
−3
0
0
−3
−11
−18
−4
0
0
−3
−4
−
21
2
3
2
Исключим элементы 3-го столбца матрицы ниже элемента a3,3. Для этого сложим строки 4,5 со строкой 3, умноженной на -3/4,-3/4 соответственно:
2
0
2
2
3
3
0
2
2
4
9
1
0
0
−4
−2
−9
−3
0
0
0
−
19
2
−
45
4
−
7
4
0
0
0
−
5
2
−
15
4
15
4
Исключим элементы 4-го столбца матрицы ниже элемента a4,4. Для этого сложим строку 5 со строкой 4, умноженной на -5/19:
2
0
2
2
3
3
0
2
2
4
9
1
0
0
−4
−2
−9
−3
0
0
0
−
19
2
−
45
4
−
7
4
0
0
0
0
−
15
19
80
19
Делим каждую строку матрицы на соответствующий ведущий элемент (если ведущий элемент существует):
1
0
1
1
3
2
3
2
0
1
1
2
9
2
1
2
0
0
1
1
2
9
4
3
4
0
0
0
1
45
38
7
38
0
0
0
0
1
−
16
3
Из расширенной матрицы восстановим систему линейных уравнений:
1 x1
+
0 x2
+
1 x3
+
1 x4
+
3
2
x5
=
3
2
0 x1
+
1 x2
+
1 x3
+
2 x4
+
9
2
x5
=
1
2
0 x1
+
0 x2
+
1 x3
+
1
2
x4
+
9
4
x5
=
3
4
0 x1
+
0 x2
+
0 x3
+
1 x4
+
45
38
x5
=
7
38
0 x1
+
0 x2
+
0 x3
+
0 x4
+
1 x5
=
−
16
3
Базисные переменные x1, x2, x3, x4, x5.
Имеем:
x1=
3
2
−1
· x3
−1
· x4
−
3
2
· x5
x2=
1
2
−1
· x3
−2
· x4
−
9
2
· x5
x3=
3
4
−
1
2
· x4
−
9
4
· x5
x4=
7
38
−
45
38
· x5
x5=
−
16
3
Подставив нижние выражения в верхние, получим решение.
x1=
−
13
2
x2=
2
x3=
19
2
x4=
13
2
x5=
−
16
3
Решение в векторном виде:
x=
x1
x2
x3
x4
x5
=
−
13
2
2
19
2
13
2
−
16
3
0
·
Хороший ответ
17 декабря 2022 22:17
Остались вопросы?
Еще вопросы по категории Математика
Длина окружности равна 100,48 см.найдите площадь круга,ограниченного этой окружностью!Помогите!!!!!...
Контроль FPS Фоновое изображение Наличие элементов интерфейса Наличие анимации движения или управления объектом Наличие обработки минимум одной кн...
Вариант 3 Сравните: 1) 12,598 и 12,6; 2) 0,257 и 0, 2569. 2. Округлите: 1) 17,56 до десятых; 2) 0,5864 до тысячных. 3. Выполните действия: 1) 4,36 +...
Срочно! 1)Стороны граней прямоугольного параллелепипеда называют ________,Вершины граней - ________. 2)Грани прямоугольного параллелепипеда, не имеющ...
Какое число равно корню из числа 11?...
Все предметы