Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
16 декабря 2022 07:48
1083
ОЧЕНЬ СРОЧНО!!!!!Ось симметрии прямоугольника ABCD пересекает его стороны BC и AD в точках M и K соответственно.На стороне AB взята точка P,на стороне CD-точка T,причём PM||KT,PM=PK.a)Определите вид выпуклого четырёхугольника PMTK.б)Докажите что расстояние от точки пересечения диагоналей четырёхугольника PMTK до точки C равно PK.
1
ответ
МК - ось симметрии, ⇒ все точки АВ и СD находятся от неё на равном расстоянии. ВМ=СМ=АК=DK.
а) Диагонали прямоугольника АС=ВD и точкой пересечения О делятся пополам ( свойство диагоналей прямоугольника).
Отрезки ВМ=АК, а РМ=РК по условию⇒ ∆ МВР = ∆ КАР по катету и гипотенузе. ВР=АР, а ∆ МРК - равнобедренный, МО=ОК. В ∆ АВС. отрезок РМ - средняя линия и параллелен диагонали АС. В ∆ АСD АК=КD, КТ║РМ по условию. Если одна из двух параллельных прямых параллельна третьей, то и вторая ей параллельна. ⇒ КТ║АС – средняя линия ∆ ADC. КТ=АС:2=РМ. Так как КТ - средняя линия ∆ АСD, то, точка Т - середина СD, из чего следует МТ - средняя линия ∆ ВСD. МТ и РК равны половине ВD, следовательно, равны между собой. Стороны четырехугольника КРМТ равны, следовательно, РМТК - ромб.
б) Вершины РМТК - середины сторон прямоугольника, его диагонали РТ и МК пересекаются под прямым углом и делят исходный прямоугольник на четыре равных меньшего размера. Диагонали этих меньших прямоугольников равны. ⇒ РК=АО=ОС, что и требовалось доказать.
а) Диагонали прямоугольника АС=ВD и точкой пересечения О делятся пополам ( свойство диагоналей прямоугольника).
Отрезки ВМ=АК, а РМ=РК по условию⇒ ∆ МВР = ∆ КАР по катету и гипотенузе. ВР=АР, а ∆ МРК - равнобедренный, МО=ОК. В ∆ АВС. отрезок РМ - средняя линия и параллелен диагонали АС. В ∆ АСD АК=КD, КТ║РМ по условию. Если одна из двух параллельных прямых параллельна третьей, то и вторая ей параллельна. ⇒ КТ║АС – средняя линия ∆ ADC. КТ=АС:2=РМ. Так как КТ - средняя линия ∆ АСD, то, точка Т - середина СD, из чего следует МТ - средняя линия ∆ ВСD. МТ и РК равны половине ВD, следовательно, равны между собой. Стороны четырехугольника КРМТ равны, следовательно, РМТК - ромб.
б) Вершины РМТК - середины сторон прямоугольника, его диагонали РТ и МК пересекаются под прямым углом и делят исходный прямоугольник на четыре равных меньшего размера. Диагонали этих меньших прямоугольников равны. ⇒ РК=АО=ОС, что и требовалось доказать.

0
·
Хороший ответ
18 декабря 2022 07:48
Остались вопросы?
Еще вопросы по категории Геометрия
Найдите углы четырехугольника, если три его угла пропорциональны числам 4,5 и 7, четвертый угол равен их полусумме. Является ли этот четырехугольник в...
Высота BM проведенная из вершины угла ромба ABCD образует со стороной AB угол = 30 градусов.длина диагонали AC равна 6 см. Найдите AM , если точка М л...
Дан прямоугольный параллелепипед ABCDA1B1C1D1. Угол A1DC1 равен бета, угол CDC1 равен альфа. AB1C1D—сечение. Периметр сечения равен P. Найти AD, AB, A...
Высота конуса равна 4 см, а диаметр основания – 6 см. Найдите образующую....
две стороны треугольника равны 9 см и 56 см а ушол между ними -120 градусов найти периметр и площадь треугольника...