Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
17 декабря 2022 08:49
437
В треугольнике ABC AC = BC, высота CH равна 7,2 и cosA=4/5 . Найдите AC.
1
ответ
Ответ:
12 (единиц)
Объяснение:
Дано:
ΔABC (см. рисунок)
AC=BC
CH⊥AB
CH=7,2
cos∠A=4/5
Найти AC.
Решение.
Так как AC=BC, то ΔABC равнобедренный. Тогда углы ∠A и ∠B при основании равны, следовательно острые. Поэтому sin∠A > 0.
Далее, из cos∠A=4/5 получаем, что
sin∠A=√(1-cos²∠A) = √(1-16/25) = √(9/25) = 3/5.
С другой стороны sin∠A= CH/AC .
Отсюда
AC = CH/sin∠A = 7,2/(3/5) = (5∙7,2)/3 = 36/3 = 12 (единиц).
12 (единиц)
Объяснение:
Дано:
ΔABC (см. рисунок)
AC=BC
CH⊥AB
CH=7,2
cos∠A=4/5
Найти AC.
Решение.
Так как AC=BC, то ΔABC равнобедренный. Тогда углы ∠A и ∠B при основании равны, следовательно острые. Поэтому sin∠A > 0.
Далее, из cos∠A=4/5 получаем, что
sin∠A=√(1-cos²∠A) = √(1-16/25) = √(9/25) = 3/5.
С другой стороны sin∠A= CH/AC .
Отсюда
AC = CH/sin∠A = 7,2/(3/5) = (5∙7,2)/3 = 36/3 = 12 (единиц).

0
·
Хороший ответ
19 декабря 2022 08:49
Остались вопросы?
Еще вопросы по категории Алгебра
Как найти знаменатель геометрической прогрессии если известно b5=11 и b7=99...
3 корня из 3 это сколько ?...
Построить график функции: y=| x^2 - 4 | | - модуль....
Найдите собственную скорость катера,если скорость течения реки 2 км/ч...
Имеется круглое глубокое озеро диаметром 200 метров и два дерева, одно из которых растет на берегу у самой воды, другое - по центру озера на небольшом...