Лучшие помощники
26 декабря 2022 15:01
2155

В правильной треугольной пирамиде сторона основания равна 6, а длина бокового ребра равна 4. Найдите высоту пирамиды

1 ответ
Посмотреть ответы
В правильной пирамиде ее вершина проецируется в центр основания. Основание - правильный треугольник, центром которого является пересечение высот, медиан и биссектрис. По свойству медиан, они делятся точкой пересечения в отношении 2:1, считая от вершины треугольника. По формуле высоты (медианы, биссектрисы) правильного треугольника: h = (√3/2)*a, где а - сторона треугольника. Тогда h=(3/2)*6 = 3√3, а отрезок высоты АО = (2/3)*h = 2√3. По Пифагору высота пирамиды DO=√(AD²-AO²) = √(16-12) = √4 = 2.
Ответ: высота пирамиды равна 2 ед.

image
0
·
Хороший ответ
28 декабря 2022 15:01
Остались вопросы?
Найти нужный