Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
Разлаживаем sin74° как синус двойного аргумента sin2L = 2sinLcosL. Затем скорачиваем cos37°. Потом представлеям cos53=sin(90-37)=sin37 (за формулами привидения). Скорачиваем sin37.
(5*sin(74°))/(cos(37°)*cos(53°) )= (5*2*sin37°cos37°))/(cos(37°)*cos(53°)) =10*sin37°/cos53° = 10**sin37°/sin37 = 10.
Ответ: 10.
(5*sin(74°))/(cos(37°)*cos(53°) )= (5*2*sin37°cos37°))/(cos(37°)*cos(53°)) =10*sin37°/cos53° = 10**sin37°/sin37 = 10.
Ответ: 10.
0
·
Хороший ответ
28 декабря 2022 22:25
Остались вопросы?
Еще вопросы по категории Алгебра
Задает ли указанное правило функцию y=f(x), если......
Sinx-корень(3)cosx=0 решите пожалуйста...
Решите графически систему уравнений. х+2у=6 и х-4у=0....
Сравните числа: корень из 14 минус корень из 13 и корень из 15 минус корень из 14...
7 в степени 2х-1 разделить на 49 в степени х разделить на х...