Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 860 б
Разлаживаем sin74° как синус двойного аргумента sin2L = 2sinLcosL. Затем скорачиваем cos37°. Потом представлеям cos53=sin(90-37)=sin37 (за формулами привидения). Скорачиваем sin37.
(5*sin(74°))/(cos(37°)*cos(53°) )= (5*2*sin37°cos37°))/(cos(37°)*cos(53°)) =10*sin37°/cos53° = 10**sin37°/sin37 = 10.
Ответ: 10.
(5*sin(74°))/(cos(37°)*cos(53°) )= (5*2*sin37°cos37°))/(cos(37°)*cos(53°)) =10*sin37°/cos53° = 10**sin37°/sin37 = 10.
Ответ: 10.
0
·
Хороший ответ
28 декабря 2022 22:25
Остались вопросы?
Еще вопросы по категории Алгебра
Смешав 6-процентный и 74-процентный растворы кислоты и добавив 10 кг чистой воды, получили 19-процентный раствор кислоты. Если бы вместо 10 кг воды до...
2a^2 +3a +1=0 !!!!!!!!!!!!!!!!!!!...
В спортивном магазине футболка из новой коллекции в марте стоила 800 рублей. В июле цену снизили, и футболка стала стоить 520 рублей. На сколько проце...
Решите неравенство 5x-3(x-8)<0 СРОЧНО!...
ОЧЕНЬ СРОЧНО Окружность поделена 100 100 точками на 100 100 равных дуг. Рядом с точками написали числа от 1 1 до 100 100 , каждое по одному ра...