Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 860 б
27 декабря 2022 03:34
553
Найдите площадь кругового сектора радиуса 4 см с центральным углом 180, 90, 60
1
ответ
Ответ:
α=180°: Sс = 8π ≈ 25,13 см²
α=90°: Sс = 4π ≈ 12,57 см²
α=60°: Sс = π*8/3 ≈ 8,38 см²
Объяснение:
Площадь круга:
Sк = π*R², где R - радиус круга.
Sк = 16π см²
Площадь сектора линейно зависит от величины центрального угла. Для сектора с центральным углом α, выраженным в градусах, формула площади выглядит так:
Sс = π*R²*α/360.
Если сравнить формулы площади круга и площади сектора, то можно сделать вывод, что:
Sс = Sк*α/360.
Значит для
α=180°: Sс = 16π*180/360 = 8π ≈ 25,13 см²
α=90°: Sс = 16π*90/360 = 4π ≈ 12,57 см²
α=60°: Sс = 16π*60/360 = π*8/3 ≈ 8,38 см²
α=180°: Sс = 8π ≈ 25,13 см²
α=90°: Sс = 4π ≈ 12,57 см²
α=60°: Sс = π*8/3 ≈ 8,38 см²
Объяснение:
Площадь круга:
Sк = π*R², где R - радиус круга.
Sк = 16π см²
Площадь сектора линейно зависит от величины центрального угла. Для сектора с центральным углом α, выраженным в градусах, формула площади выглядит так:
Sс = π*R²*α/360.
Если сравнить формулы площади круга и площади сектора, то можно сделать вывод, что:
Sс = Sк*α/360.
Значит для
α=180°: Sс = 16π*180/360 = 8π ≈ 25,13 см²
α=90°: Sс = 16π*90/360 = 4π ≈ 12,57 см²
α=60°: Sс = 16π*60/360 = π*8/3 ≈ 8,38 см²
0
·
Хороший ответ
29 декабря 2022 03:34
Остались вопросы?
Еще вопросы по категории Геометрия
Найдите объем многогранника,вершинами которого являются точки A, B, C1, Dпрямоугольного параллелепипеда ABCDA1B1C1D1, у которого AB=15,AD=5, AA1=1....
в окружность вписан правильный треугольник abc площадь треугольника равна 12 корень из 3 а 3=R корень из 3. Найти: длину окружности...
На стороне AC треугольника ABC отмечена точка D так, что AD=6, DC=10. Площадь треугольника ABC равна 48. Найдите площадь треугольника BCD....
В окружности с центром О проведены диаметр AB и хорды AC и AD так, что угол BAC= углу BAD. Докажите, что AC=AD...
периметр равнобедренного тупоугольного треугольника равен 45 см,а одна из его сторон больше на 9 см.найдите стороны треугольника...