Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
15 января 2023 04:41
859
Докажите, что биссектрисы углов при основании равнобедренного треугольника равны.
1
ответ
АВС, АВ = ВС, угол А = углу С.
Пусть АК и СМ - биссектрисы углов А и С.
Углы КАС и МСА - равны (как половинки равных углов)
Треугольники КАС и МСА равны по стороне АС и двум прилежащим к ней углам.
Значит АК = МС, что и требовалось доказать.
Пусть АК и СМ - биссектрисы углов А и С.
Углы КАС и МСА - равны (как половинки равных углов)
Треугольники КАС и МСА равны по стороне АС и двум прилежащим к ней углам.
Значит АК = МС, что и требовалось доказать.
0
·
Хороший ответ
17 января 2023 04:41
Остались вопросы?
Еще вопросы по категории Геометрия
В уравнении окружности x2+y2=r2 х и у это координаты той точки, которая лежит на окружности ?...
№ 5. Дан прямоугольный треугольник АВС, где АВ - гипотенуза. В данный треугольник вписана окружность с центром О, причем данная окружность касается ги...
Какие из данных утверждений верны? Запишите их номера. 1)Если две стороны одного треугольника соответственно равны двум сторонам другого треугольника,...
В ромбе ABCD биссектриса угла BAC пересекает сторону BC в точке M.Найдите углы ромба, если угол AMC=120* *-градус...
Дано Угола =углу b co=8 do=12 ao=10 Найти ob=? ac:bd=? S угол abc=S угол bod...