Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
27 декабря 2022 11:44
1179
на продолжении стороны BC равнобедренного треугольника ABC с основанием AC отметили точку D так, что CD=AC, точка C находится между точками B и D. Найдите велечину угла ADC, если угол ABC равен 36°. Ответ дайте в градусах. Ответьте!!!! СРОЧНО!!!!!
1
ответ
Ответ:
Дано: AB = BC, CD = AC, ∠ABC = 36°
Найти: ∠ADC - ?
Решение:
По свойствам равнобедренного треугольника его углы при основании равны, тогда так как треугольник ΔACD и ΔABC - равнобедренные (по условию CD = AC, AB = BC), то угол
∠CAD = ∠CDA и угол ∠BAC = ∠ACB.
По теореме про сумму углов треугольника (ΔABC):
∠BAC + ∠ACB + ∠ABC = 180° ⇒
⇒
.
По теореме в треугольнике внешний угол равен сумму двух углов не смежных с ним, тогда угол ∠ACD = ∠ABC + ∠BAC = 36° + 72° = 108°
По теореме про сумму углов треугольника (ΔACD):
∠DAC + ∠CDA + ∠ACD = 180° ⇒
⇒
.
∠ADC = 36°
Объяснение:Дано: AB = BC, CD = AC, ∠ABC = 36°
Найти: ∠ADC - ?
Решение:
По свойствам равнобедренного треугольника его углы при основании равны, тогда так как треугольник ΔACD и ΔABC - равнобедренные (по условию CD = AC, AB = BC), то угол
∠CAD = ∠CDA и угол ∠BAC = ∠ACB.
По теореме про сумму углов треугольника (ΔABC):
∠BAC + ∠ACB + ∠ABC = 180° ⇒
⇒
По теореме в треугольнике внешний угол равен сумму двух углов не смежных с ним, тогда угол ∠ACD = ∠ABC + ∠BAC = 36° + 72° = 108°
По теореме про сумму углов треугольника (ΔACD):
∠DAC + ∠CDA + ∠ACD = 180° ⇒
⇒

0
·
Хороший ответ
29 декабря 2022 11:44
Остались вопросы?
Еще вопросы по категории Геометрия
Диоганали четырехугольника равны 9 и 31. Найдите периметр четырехугольника ,вершинами которого являются середины сторон данного четырехугольника...
1)Площадь полной поверхности конуса равна 24π, площадь основания конуса равна 16π. Чему равна площадь боковой поверхности конуса. 2) Осевым сечением к...
Теорема Пифагора. Формулы и примеры...
помогите пожалуйста! "Найти острые углы прямоугольного треугольника, если они относятся как 4:5" ???...
В остроугольном треугольнике АВС проведены высоты АК и СЕ = 12см,ВЕ=9см,АК=10см.Найдите площадь треугольника АВС....