Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 865 б
27 декабря 2022 11:44
1080
на продолжении стороны BC равнобедренного треугольника ABC с основанием AC отметили точку D так, что CD=AC, точка C находится между точками B и D. Найдите велечину угла ADC, если угол ABC равен 36°. Ответ дайте в градусах. Ответьте!!!! СРОЧНО!!!!!
1
ответ
Ответ:
Дано: AB = BC, CD = AC, ∠ABC = 36°
Найти: ∠ADC - ?
Решение:
По свойствам равнобедренного треугольника его углы при основании равны, тогда так как треугольник ΔACD и ΔABC - равнобедренные (по условию CD = AC, AB = BC), то угол
∠CAD = ∠CDA и угол ∠BAC = ∠ACB.
По теореме про сумму углов треугольника (ΔABC):
∠BAC + ∠ACB + ∠ABC = 180° ⇒
⇒
.
По теореме в треугольнике внешний угол равен сумму двух углов не смежных с ним, тогда угол ∠ACD = ∠ABC + ∠BAC = 36° + 72° = 108°
По теореме про сумму углов треугольника (ΔACD):
∠DAC + ∠CDA + ∠ACD = 180° ⇒
⇒
.
∠ADC = 36°
Объяснение:Дано: AB = BC, CD = AC, ∠ABC = 36°
Найти: ∠ADC - ?
Решение:
По свойствам равнобедренного треугольника его углы при основании равны, тогда так как треугольник ΔACD и ΔABC - равнобедренные (по условию CD = AC, AB = BC), то угол
∠CAD = ∠CDA и угол ∠BAC = ∠ACB.
По теореме про сумму углов треугольника (ΔABC):
∠BAC + ∠ACB + ∠ABC = 180° ⇒
⇒
По теореме в треугольнике внешний угол равен сумму двух углов не смежных с ним, тогда угол ∠ACD = ∠ABC + ∠BAC = 36° + 72° = 108°
По теореме про сумму углов треугольника (ΔACD):
∠DAC + ∠CDA + ∠ACD = 180° ⇒
⇒

0
·
Хороший ответ
29 декабря 2022 11:44
Остались вопросы?
Еще вопросы по категории Геометрия
Назовите углы прилежащие к стороне AB в треугольнике ABC (рисунок внутри)...
Отрезки AB и DC лежат на параллельных прямых,а отрезки AC и BD пересекаются в точке M.Найдите MC,если AB=18,DC=54,AC=48....
Найдите площадь ромба, если его диагонали равны 10 и 6...
В треугольнике ABC AB=BC AC=5, cosC=0,8. найдите высоту CH...
SABCD - правильная пирамида, SM и SK - апофемы, S(ABCD)=2S(KSM), площадь боковой поверхности равна 16√5. Найти S(ABCD)....