Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
27 декабря 2022 11:44
1131
на продолжении стороны BC равнобедренного треугольника ABC с основанием AC отметили точку D так, что CD=AC, точка C находится между точками B и D. Найдите велечину угла ADC, если угол ABC равен 36°. Ответ дайте в градусах. Ответьте!!!! СРОЧНО!!!!!
1
ответ
Ответ:
Дано: AB = BC, CD = AC, ∠ABC = 36°
Найти: ∠ADC - ?
Решение:
По свойствам равнобедренного треугольника его углы при основании равны, тогда так как треугольник ΔACD и ΔABC - равнобедренные (по условию CD = AC, AB = BC), то угол
∠CAD = ∠CDA и угол ∠BAC = ∠ACB.
По теореме про сумму углов треугольника (ΔABC):
∠BAC + ∠ACB + ∠ABC = 180° ⇒
⇒
.
По теореме в треугольнике внешний угол равен сумму двух углов не смежных с ним, тогда угол ∠ACD = ∠ABC + ∠BAC = 36° + 72° = 108°
По теореме про сумму углов треугольника (ΔACD):
∠DAC + ∠CDA + ∠ACD = 180° ⇒
⇒
.
∠ADC = 36°
Объяснение:Дано: AB = BC, CD = AC, ∠ABC = 36°
Найти: ∠ADC - ?
Решение:
По свойствам равнобедренного треугольника его углы при основании равны, тогда так как треугольник ΔACD и ΔABC - равнобедренные (по условию CD = AC, AB = BC), то угол
∠CAD = ∠CDA и угол ∠BAC = ∠ACB.
По теореме про сумму углов треугольника (ΔABC):
∠BAC + ∠ACB + ∠ABC = 180° ⇒
⇒
По теореме в треугольнике внешний угол равен сумму двух углов не смежных с ним, тогда угол ∠ACD = ∠ABC + ∠BAC = 36° + 72° = 108°
По теореме про сумму углов треугольника (ΔACD):
∠DAC + ∠CDA + ∠ACD = 180° ⇒
⇒

0
·
Хороший ответ
29 декабря 2022 11:44
Остались вопросы?
Еще вопросы по категории Геометрия
диагонали прямоугольника abcd пересекаются в точке o. Перпендикуляр АМ ,опущенный на диагональ BD , разбивает отрезок OB на части : OM =12см и BM = 3...
Найдите высоту правильной треугольной пирамиды Стороны основания которой равны 8 см а объем равен 4√3куб.см ...
В правильной четырехугольной призме сторона основания равна 2 , а боковое ребро равно 4. Точка k – середина ребра&...
Номер 8 помогите понять что такое совпадающие лучи !!...
Найдите площадь боковой поверхности правильной шестиугольной призмы, сторона основания которой равна 3, а высота — 6....