Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
27 декабря 2022 12:27
1408
Докажите что радиус окружности вписанной в прямоугольный Прямоугольный треугольник с катетами А и b гипотенузой C вычисляется по формуле r равно a+b-c:2
1
ответ
Докажите, что радиус окружности, вписанной в прямоугольный треугольник с катетами а и b и гипотенузой с. вычисляется по формуле r=(a+b-c):2
--------
Вписанная окружность делит стороны треугольника на отрезки, равные от вершины до точек касания.
Отрезки касательных, проведенных из одной точки к окружности, равны.
Если катеты равны a и b, то расстояние от вершины угла до точки касания равно:
на катете а =a-r,
на катете b=b-r.
Гипотенуза с равна сумме отрезков касательных из острых углов до точек касания.
с=a-r+b-r= a+b-2r
c-(a+b)=-2r домножим обе части уравнения на -1
r=(a+b-c):2, что и требовалось доказать.
--------
Вписанная окружность делит стороны треугольника на отрезки, равные от вершины до точек касания.
Отрезки касательных, проведенных из одной точки к окружности, равны.
Если катеты равны a и b, то расстояние от вершины угла до точки касания равно:
на катете а =a-r,
на катете b=b-r.
Гипотенуза с равна сумме отрезков касательных из острых углов до точек касания.
с=a-r+b-r= a+b-2r
c-(a+b)=-2r домножим обе части уравнения на -1
r=(a+b-c):2, что и требовалось доказать.

0
·
Хороший ответ
29 декабря 2022 12:27
Остались вопросы?
Еще вопросы по категории Геометрия
отрезок AD перпендикулярен к плоскости равнобедренного треугольника ABC . Известно что AB=AC=5 см , BC=6см , AD=12 см. Найти расстояние от концов отре...
Дан параллелограмм ABCD. Выразите вектор AC через векторы a и b, если: a) a= AB, b= BC; б) a=CB, b= CD; в) a=AB; b=DA...
Построить угол, равный 75 градусов...
В треугольнике MNK проведены высоты КА, NC и МВ, пересекающиеся в точке О. Найдите отрезок NO, если CK = 15 см, ОС = 8 см, AN = 5 см....
В ромбе АВСD угол АВС равен 134°. Найдите угол АСD....