Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 865 б
14 января 2023 22:13
1208
Найдите наименьшее значение функции y=8cosx-17x+6 на отрезке [-3π/2;0]
1
ответ
Y`=-8sinx-17
-8sinx-17=0
sinx=-17/8=-2 1/8
sinx не може перевищувати [-1;1], отже функція на всьому проміжку спадає, критичних точок не існує Перевіримо функцію на кінцях відрізка
y(-3п/2)=8*0-17*(-3п/2)+6=51п/2+6≈86
y(0)=8*1-17*0+6=14
Відповідь: найменше значення функції у=14 в точці х=0
-8sinx-17=0
sinx=-17/8=-2 1/8
sinx не може перевищувати [-1;1], отже функція на всьому проміжку спадає, критичних точок не існує Перевіримо функцію на кінцях відрізка
y(-3п/2)=8*0-17*(-3п/2)+6=51п/2+6≈86
y(0)=8*1-17*0+6=14
Відповідь: найменше значення функції у=14 в точці х=0
0
·
Хороший ответ
16 января 2023 22:13
Остались вопросы?
Еще вопросы по категории Алгебра
Докажите: log3(7) + log7(3) >2...
Деятельность компании связана с разработкой и установкой программных пакетов коммерческим фирмам. В настоящее время компания обслуживает 50 фирм, в фи...
Сколько процентов составляет число 8 от числа 200 и число и 2,1 от числа 14...
Брюки дороже рубашки на 20% а пиджак дороже рубашки на 44%. на сколько процентов пиджак дороже брюк...
Решите неравенство 0,5^x<3...