Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 860 б
14 января 2023 22:13
1189
Найдите наименьшее значение функции y=8cosx-17x+6 на отрезке [-3π/2;0]
1
ответ
Y`=-8sinx-17
-8sinx-17=0
sinx=-17/8=-2 1/8
sinx не може перевищувати [-1;1], отже функція на всьому проміжку спадає, критичних точок не існує Перевіримо функцію на кінцях відрізка
y(-3п/2)=8*0-17*(-3п/2)+6=51п/2+6≈86
y(0)=8*1-17*0+6=14
Відповідь: найменше значення функції у=14 в точці х=0
-8sinx-17=0
sinx=-17/8=-2 1/8
sinx не може перевищувати [-1;1], отже функція на всьому проміжку спадає, критичних точок не існує Перевіримо функцію на кінцях відрізка
y(-3п/2)=8*0-17*(-3п/2)+6=51п/2+6≈86
y(0)=8*1-17*0+6=14
Відповідь: найменше значення функції у=14 в точці х=0
0
·
Хороший ответ
16 января 2023 22:13
Остались вопросы?
Еще вопросы по категории Алгебра
В случайном эксперименте бросают три игральные кости.Найдите вероятность того,что в сумме выпадет 10 очков.Результат округлите до сотых....
Вычислите а) cos 180 +4tg45...
Х-12/x-4=3/5 решите уравнение,пожалуйста, срочно!...
В Среднем за день во время конференции расходуется 80 пакетиков чая . Конференция длится 8 дней . В пачке чая 100 пакетиков . Какого наименьшего колич...
Вычислите: 1) cos 225° 2) tg 330°...