Лучшие помощники
- Megamozg 2190 б
- Matalya1 1800 б
- DevAdmin 1695 б
- arkasha_bortnikov 860 б
- Dwayne_Johnson 845 б
15 января 2023 04:56
357
Геометрия 7 класс.
Вопросы для повторения к главе II.
Помогите плес
1
ответ
Треугольником называется фигура,состоящая из трех точек не лежащих на одной прямой и трех отрезков соединяющих эти точки.
Периметр треугольника- это сумма длин трех сторон треугольника.
(рисунок во вложении)
№2
Равными треугольниками называют такие треугольники у которых равных соответствующие элементы(стороны и углы)
№3
Теоремой называют утверждение,справедливость которого устанавливают путем рассуждений,а сами рассуждения называются докозательствами теоремы.
№4
Первый признак равенства треугольников
Если две стороны и угол между нимми одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника,то такие треугольники равны.
Доказательство стр 30.
№5
Отрезок АН называется перпендикуляром,проведенным из точки А к прямой а,если прямые АН и а перпендикулярны. Рисунок на стр 32(рис. 55)(рис. 55)
№6
Теорема
Из точки,не лежащей на прямой,можно провести перпендикуляр к этой прямой,и притом только один. (доказательство страница 32)
№7
Отрезок,соединяющий вершину треугольника с серединой противоположной стороны,называется медианой треугольника
Всего треугольник имеет 3 медианы
№8
отрезок,биссектрисы угла треугольника,соединяющий вершину треугольника с точкой противоположной стороны,называется биссектрисой треугольника.
Треугольник имеет три биссектрисы.
№9
Перпендикуляр,проведенный из вершины треугольника к прямой,содержащей противоположную сторону,называется высотой треугольника.
Любой треугольник имеет три высоты.
№10
Треугольник называется равнобедренным, если две его стороны равны. Равные стороны называются боковыми сторонами,а третья сторона называется основанием.
№11
Треугольник,все стороны которого равны называется равносторонним.
№ 12
Докозательство на странице 35
№13
Теорема
В равнобедренном треугольнике биссектриса проведенная к основанию является медианой и высотой(доказательсво стр 35-36)
№14
Если сторона и два прелижащей к ней угла одного треугольника соответственно равным стороне и двум прелижащим к ней углам другого треугольника,то такие треугольники равны.( доказательство на странице 38-39)
№15
Если три стороны олного треугольника соответственно равным трем сторонам другого треугольника,то такие треугольника равны. (доказательство 39-40 стр)
№16
Определение- предложение, в котором разъесняется смысл того или иного выражения или названия.
Окружность-геометрическая фигура состоящая из всех точек плоскости расположенных на заданном расстоянии от данной точки
Центр-данная точка.
радиус- отрезок соединяющий центр с какой-либо точкой окружности
хорда-отрезок соединяющий две точки окружности
диаметр-хорда проходящая через центр.
Ответы на вопросы главы III
№1
Две прямые называются паралльными если они не пересекаются.
Два отрезка называются параллельными,если они лежат на параллельных прямых.
№2
Прямая с называется секущей по отношению к прямым а и в если она пересекает их в двух точках.образуются углы: накрестлежащие,односторонние и соотвественные.
№7 аксиома- исходные положения
примеры:
через любые две точки проходит прямая и притом только одна
на любом луче от его начала можно отложить отрезок равный данному и притом только один.
№9
через точку не лежащую на данной прямой проходит только одна прямая параллельная данной
№10
следствия- утверждения которое выводятся непосредственно из аксиом или теорем
№ 12
теорема обратной данной называется такая теорема в которой условием является заключение данной теоремы,а заключением-условие данной теоремы.
Пример: если две параллельные прямые пересечены секущей,то накрестлежащие углы равны.
Ответы на вопросы для повторения к главе IV
№1
Сумма углов треугольника равна 180 градусам
№2
Внешний угол-угол смежный с каким-нибудь углом этого треугольника.
№4
остроугольным треугольником называют треугольник если все его углы острые
тупоугольным треугольником называют треугольник,если один из его углов тупой
№5
прямоугольным треугольником называют треугольник у которого один из его углов прямой.
Сторона лежащая против прямого угла называется гипотенузой, две другие-катетами.
№ 9
Неравенство треугольника выходит из следствия:
Для любых трех точек А,В,С не лежащих на одной прямой справедливы неравенства
АВ< АС+ВС, АС<АВ+ВС, ВС<ВА+АС.
Каждое из этих неравенств называется неравенством треугольника.
№12
Если гипотенуза и острый катет одного прямоугольного треугольника соответсвенно равны гипотенузе и острому углу другоого прямоугольного треугольника,то такие треугольники равны
№13
Если гипотенуза и катет одногоо прямоуголльного треугольника соответсвенно равны гипотенузе и катету другого то такие треугольники равны.
№ 16
Расстоянием от точки до прямой называется длина перпендикуляра проведенного из точки к прямой.
№ 18
Расстояние от произвольной точки одной из параллельных прямых до другой прямой называется расстоянием между этими прямыми.
Периметр треугольника- это сумма длин трех сторон треугольника.
(рисунок во вложении)
№2
Равными треугольниками называют такие треугольники у которых равных соответствующие элементы(стороны и углы)
№3
Теоремой называют утверждение,справедливость которого устанавливают путем рассуждений,а сами рассуждения называются докозательствами теоремы.
№4
Первый признак равенства треугольников
Если две стороны и угол между нимми одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника,то такие треугольники равны.
Доказательство стр 30.
№5
Отрезок АН называется перпендикуляром,проведенным из точки А к прямой а,если прямые АН и а перпендикулярны. Рисунок на стр 32(рис. 55)(рис. 55)
№6
Теорема
Из точки,не лежащей на прямой,можно провести перпендикуляр к этой прямой,и притом только один. (доказательство страница 32)
№7
Отрезок,соединяющий вершину треугольника с серединой противоположной стороны,называется медианой треугольника
Всего треугольник имеет 3 медианы
№8
отрезок,биссектрисы угла треугольника,соединяющий вершину треугольника с точкой противоположной стороны,называется биссектрисой треугольника.
Треугольник имеет три биссектрисы.
№9
Перпендикуляр,проведенный из вершины треугольника к прямой,содержащей противоположную сторону,называется высотой треугольника.
Любой треугольник имеет три высоты.
№10
Треугольник называется равнобедренным, если две его стороны равны. Равные стороны называются боковыми сторонами,а третья сторона называется основанием.
№11
Треугольник,все стороны которого равны называется равносторонним.
№ 12
Докозательство на странице 35
№13
Теорема
В равнобедренном треугольнике биссектриса проведенная к основанию является медианой и высотой(доказательсво стр 35-36)
№14
Если сторона и два прелижащей к ней угла одного треугольника соответственно равным стороне и двум прелижащим к ней углам другого треугольника,то такие треугольники равны.( доказательство на странице 38-39)
№15
Если три стороны олного треугольника соответственно равным трем сторонам другого треугольника,то такие треугольника равны. (доказательство 39-40 стр)
№16
Определение- предложение, в котором разъесняется смысл того или иного выражения или названия.
Окружность-геометрическая фигура состоящая из всех точек плоскости расположенных на заданном расстоянии от данной точки
Центр-данная точка.
радиус- отрезок соединяющий центр с какой-либо точкой окружности
хорда-отрезок соединяющий две точки окружности
диаметр-хорда проходящая через центр.
Ответы на вопросы главы III
№1
Две прямые называются паралльными если они не пересекаются.
Два отрезка называются параллельными,если они лежат на параллельных прямых.
№2
Прямая с называется секущей по отношению к прямым а и в если она пересекает их в двух точках.образуются углы: накрестлежащие,односторонние и соотвественные.
№7 аксиома- исходные положения
примеры:
через любые две точки проходит прямая и притом только одна
на любом луче от его начала можно отложить отрезок равный данному и притом только один.
№9
через точку не лежащую на данной прямой проходит только одна прямая параллельная данной
№10
следствия- утверждения которое выводятся непосредственно из аксиом или теорем
№ 12
теорема обратной данной называется такая теорема в которой условием является заключение данной теоремы,а заключением-условие данной теоремы.
Пример: если две параллельные прямые пересечены секущей,то накрестлежащие углы равны.
Ответы на вопросы для повторения к главе IV
№1
Сумма углов треугольника равна 180 градусам
№2
Внешний угол-угол смежный с каким-нибудь углом этого треугольника.
№4
остроугольным треугольником называют треугольник если все его углы острые
тупоугольным треугольником называют треугольник,если один из его углов тупой
№5
прямоугольным треугольником называют треугольник у которого один из его углов прямой.
Сторона лежащая против прямого угла называется гипотенузой, две другие-катетами.
№ 9
Неравенство треугольника выходит из следствия:
Для любых трех точек А,В,С не лежащих на одной прямой справедливы неравенства
АВ< АС+ВС, АС<АВ+ВС, ВС<ВА+АС.
Каждое из этих неравенств называется неравенством треугольника.
№12
Если гипотенуза и острый катет одного прямоугольного треугольника соответсвенно равны гипотенузе и острому углу другоого прямоугольного треугольника,то такие треугольники равны
№13
Если гипотенуза и катет одногоо прямоуголльного треугольника соответсвенно равны гипотенузе и катету другого то такие треугольники равны.
№ 16
Расстоянием от точки до прямой называется длина перпендикуляра проведенного из точки к прямой.
№ 18
Расстояние от произвольной точки одной из параллельных прямых до другой прямой называется расстоянием между этими прямыми.
0
·
Хороший ответ
17 января 2023 04:56
Остались вопросы?
Еще вопросы по категории Геометрия
Отрезок CD биссектриса треугольника ABC AC- 12 см BC- 18 см AD-10 см найдите отрезок BD...
В окружность вписан правильный девятиугольник ABCDEFGHI. Вычисли градусную меру дуги AB...
На рисунке отрезок МР параллелен стороне СЕ, луч МК является биссектрисой угла ВМР. Найдите величину угла ВКМ. Чертёж на фото.Можно побыстрей пожалуйс...
Географические координаты крайних точек Австралии. Их должно быть 5: м. Йорк, м. Байрон, м. Саут-Ист-Пойнт, м. Саут-Ист-Кейт и м, Стип-Пойнт...
Найдите боковую сторону AB трапеции ABCD, если углы ABC и BCD равны соответственно 60° и 135°, а CD = 39....
Все предметы