Лучшие помощники
- Megamozg 2190 б
- Matalya1 1800 б
- DevAdmin 1695 б
- arkasha_bortnikov 860 б
- Dwayne_Johnson 845 б
|sinx|=sinxcosx
1)sinx<0⇒x∈(π+2πn;2π+2πn)
sinx=-sinxcosx
sinx+sinxcosx=0
sinx(1+cosx)=0
sinx=0 не удовл усл
1+cosx=0
cosx=-1
x=π+2πn не удов усл
2)sinx≥0⇒x∈[2πn;π+2πn]
sinx=sinxcosx
sinx-sinxcosx=0
sinx(1-cosx)=0
sinx=0⇒x=πn
1-cosx=0
cosx=1
x=2πn
Ответ x=πn
1)sinx<0⇒x∈(π+2πn;2π+2πn)
sinx=-sinxcosx
sinx+sinxcosx=0
sinx(1+cosx)=0
sinx=0 не удовл усл
1+cosx=0
cosx=-1
x=π+2πn не удов усл
2)sinx≥0⇒x∈[2πn;π+2πn]
sinx=sinxcosx
sinx-sinxcosx=0
sinx(1-cosx)=0
sinx=0⇒x=πn
1-cosx=0
cosx=1
x=2πn
Ответ x=πn
0
·
Хороший ответ
17 января 2023 06:03
Остались вопросы?
Еще вопросы по категории Алгебра
Все предметы