Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
15 января 2023 08:05
1444
найдите площадь выпуклого четырехугольника с диагоналями 8 и 5, если отрезки, соединяющие середины его протиаолежащих сторон, равны
1
ответ
Если последовательно соединить середины соседних сторон, то каждая из сторон полученного четырехугольника будет средней линией в треугольнике, образованном двумя сторонами исходного четырехугольника и одной из его диагоналей. То есть получится параллелограмм (все стороны которого параллельны диагоналям). По условию, диагонали ЭТОГО параллелограмма равны между собой. То есть этот параллелограмм- прямоугольник. Что означает, что диагонали исходного четырехугольника взаимно перпендикулярны.
Поэтому площадь его равна 8*5/2 = 20;
Поэтому площадь его равна 8*5/2 = 20;
0
·
Хороший ответ
17 января 2023 08:05
Остались вопросы?
Еще вопросы по категории Геометрия
В треугольнике CDE точка K лежит на отрезки CE,причем угол CKD-острый угол.Докажите,что DE>Dk Помогите пж срочно надо Решите с доказательством реш...
Центр правильного треугольника АВС- точка О, его сторона равна 3. Отрезок ОМ-перпендикуляр к плоскости АВС, ОМ = 2. Найдите расстояние от точки М до в...
Что такое паралелепипед?...
Геометрия 8 класс атанасян номер 376...
диагональ АС прямоугольника АВСД равна 3 см и составляет со стороной АД угол 37 градусов. найдите площадь прямоугольника АВСД...