Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 860 б
15 января 2023 08:05
1225
найдите площадь выпуклого четырехугольника с диагоналями 8 и 5, если отрезки, соединяющие середины его протиаолежащих сторон, равны
1
ответ
Если последовательно соединить середины соседних сторон, то каждая из сторон полученного четырехугольника будет средней линией в треугольнике, образованном двумя сторонами исходного четырехугольника и одной из его диагоналей. То есть получится параллелограмм (все стороны которого параллельны диагоналям). По условию, диагонали ЭТОГО параллелограмма равны между собой. То есть этот параллелограмм- прямоугольник. Что означает, что диагонали исходного четырехугольника взаимно перпендикулярны.
Поэтому площадь его равна 8*5/2 = 20;
Поэтому площадь его равна 8*5/2 = 20;
0
·
Хороший ответ
17 января 2023 08:05
Остались вопросы?
Еще вопросы по категории Геометрия
Выведите формулу для вычисления длины вектора по его координатам...
В треугольнике ABC проведены медиана BM и высота BH известно что AC=15 и BC=BM найдите AH...
Дано: KABCDEM - правильная шестиугольная пирамида. КО - высота пирамиды. KT⊥AM; ∠KTO=60°. Найти отношение площадей ΔМКD и ΔMKC....
Сделайте пожалуйста чертеж детали в трех видах (проекциях)...
Длина отрезка AB равна 240. На отрезке отложена точка C вычесли длины частей отрезка, если AC:CB=3:1...