Лучшие помощники
- Megamozg 2180 б
- Matalya1 1800 б
- DevAdmin 1690 б
- arkasha_bortnikov 840 б
- Dwayne_Johnson 840 б
15 января 2023 08:05
1169
найдите площадь выпуклого четырехугольника с диагоналями 8 и 5, если отрезки, соединяющие середины его протиаолежащих сторон, равны
1
ответ
Если последовательно соединить середины соседних сторон, то каждая из сторон полученного четырехугольника будет средней линией в треугольнике, образованном двумя сторонами исходного четырехугольника и одной из его диагоналей. То есть получится параллелограмм (все стороны которого параллельны диагоналям). По условию, диагонали ЭТОГО параллелограмма равны между собой. То есть этот параллелограмм- прямоугольник. Что означает, что диагонали исходного четырехугольника взаимно перпендикулярны.
Поэтому площадь его равна 8*5/2 = 20;
Поэтому площадь его равна 8*5/2 = 20;
0
·
Хороший ответ
17 января 2023 08:05
Остались вопросы?
Еще вопросы по категории Геометрия
В треугольнике ABC: угол ABC = 90 градусов, AD = BD = DC, угол BAD = 64 градуса. Найдите угол DCB....
На рисунке изображён параллелограмм ABCD используя рисунок, найдите sin BDC...
Точка О - середина образующей цилиндра. Ось цилиндра видна из точки О под углом, градусная мера которого равна 60 градусов, а расстояние от центра осн...
В прямоугольном треугольнике высота, проведенная из вершины прямого угла, равна медиане, проведенной из того же угла. Гипотенуза этого треугольника ра...
Перечертите в тетрадь и заполните таблицу степеней числа 3 с показателями от 1 до 10....
Все предметы