Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
15 января 2023 08:05
1350
найдите площадь выпуклого четырехугольника с диагоналями 8 и 5, если отрезки, соединяющие середины его протиаолежащих сторон, равны
1
ответ
Если последовательно соединить середины соседних сторон, то каждая из сторон полученного четырехугольника будет средней линией в треугольнике, образованном двумя сторонами исходного четырехугольника и одной из его диагоналей. То есть получится параллелограмм (все стороны которого параллельны диагоналям). По условию, диагонали ЭТОГО параллелограмма равны между собой. То есть этот параллелограмм- прямоугольник. Что означает, что диагонали исходного четырехугольника взаимно перпендикулярны.
Поэтому площадь его равна 8*5/2 = 20;
Поэтому площадь его равна 8*5/2 = 20;
0
·
Хороший ответ
17 января 2023 08:05
Остались вопросы?
Еще вопросы по категории Геометрия
помогите с геометрией!!!!...
Верно ли утверждение,что смежные углы равны?...
основанием прямой треугольной призмы abca1b1c1 является равнобедренный треугольник abc, в котором ab = bc = 10, ac = 16. боковое ребро призмы равно 12...
ДАЮ 50 БАЛЛОВ. На рисунке 311, а изображен квадрат, вписанный в окружность радиуса R. Перечертите таблицу в тетрадь и заполните пустые клетки (а4 — ст...
Найти боковую сторону АВ трапеции ABCD,если углы АВС и ВСD равны соответственно 45 градусов и150 градусов ,а CD=26. Помогите пожалуйста,очень надо....