Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 865 б
15 января 2023 09:36
654
Окружности радиусов 45 и 90 касаются внешним образом. Точки A и B лежат на первой окружности, точки C и D на второй .При этом AC и BD – общие касательные окружностей. Найдите расстояние между прямыми AB и CD.
1
ответ
Продлим касательные до их пересечения в точке М.
Центры О и О₁ касающихся окружностей лежат на биссектрисе МО угла СМD.
r =O₁B=45, R=OD=90.
Радиусы О₁В и ОD, проведенные в точки касания, перпендикулярны касательной МD (свойство радиусов).
Из О₁ проведем О₁Н ║ МD. В параллелограмме О₁ВDО ∠В=∠D= 90°, следовательно, О₁ОDВ - прямоугольник.
HD=O₁B, ОН=90-45=45.
Прямоугольные ∆ МО₁В и ∆ МОD подобны по общему острому углу при М.
ОО₁=R+r=90+45=135
Косинус равных углов при О и О₁=ОН/ОО₁=45/135=1/3.
Тогда КО₁=О₁В•cos KO₁B=45•1/3=15
TO=DO•cos TOD=90•1/3=30
Расстояние между АВ и СD равно
КТ=ОО₁-ТО+КО₁=135-30+15=120 (ед. длины)
Центры О и О₁ касающихся окружностей лежат на биссектрисе МО угла СМD.
r =O₁B=45, R=OD=90.
Радиусы О₁В и ОD, проведенные в точки касания, перпендикулярны касательной МD (свойство радиусов).
Из О₁ проведем О₁Н ║ МD. В параллелограмме О₁ВDО ∠В=∠D= 90°, следовательно, О₁ОDВ - прямоугольник.
HD=O₁B, ОН=90-45=45.
Прямоугольные ∆ МО₁В и ∆ МОD подобны по общему острому углу при М.
ОО₁=R+r=90+45=135
Косинус равных углов при О и О₁=ОН/ОО₁=45/135=1/3.
Тогда КО₁=О₁В•cos KO₁B=45•1/3=15
TO=DO•cos TOD=90•1/3=30
Расстояние между АВ и СD равно
КТ=ОО₁-ТО+КО₁=135-30+15=120 (ед. длины)

0
·
Хороший ответ
17 января 2023 09:36
Остались вопросы?
Еще вопросы по категории Геометрия
имеют ли центр симметрии а)правильный треугольник б)квадрат в)правильный пятиугольник г)правильный шестиугольник...
Найдите сторону равнобедренного треугольника, если две другие стороны равны а)6см и 3 см b) 8 см и 2 см...
Диагонали четырехугольника равны 27 и 56.найдите периметр четырехугольника вершинами которого являются середины сторон этого четырехугольника...
Найти площадь параллелограмма, изображенного на рисунке....
В треугольнике ABC угол C равен 90°, АС = 20 , tgА = 9/40 Найдите АВ...