Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
15 января 2023 12:26
1446
высота цилиндра равна 6 радиус основания равен 4.Концы данного отрезка лежат на окружности обоих оснований длина отрезка равна 8.Найдите расстояние от этого отрезка до оси цилиндра
1
ответ
Ось цилиндра и отрезок АВ - скрещивающиеся прямые, так как эти две прямые не имеют общих точек, и не являюnся параллельными.
Цитата: "Расстоянием между скрещивающимися прямыми называется расстояние между одной из скрещивающихся прямых и плоскостью, проходящей через другую прямую параллельно первой".
Опустим перпендикуляры АА1 и ВВ1 на противоположные основания. Тогда плоскость АА1ВВ1 будет плоскостью, проходящей через прямую АВ параллельно оси цилиндра (так как АА1 и ВВ1 параллельны оси). Следовательно, искомое расстояние - это перпендикуляр ОН, проведенный из центра основания О к хорде АВ1 и по свойству такого перпендикуляра делящий эту хорду пополам.
Найдем по Пифагору длину хорды АВ1: АВ1=√(8²-6²)=2√7. Теперь найдем из треугольника АОН по Пифагору искомое расстояние ОН. ОН=√(АО²-АН²)=√(16-7)=3.
Ответ: расстояние от отрезка АВ до оси цилиндра равно 3.
Цитата: "Расстоянием между скрещивающимися прямыми называется расстояние между одной из скрещивающихся прямых и плоскостью, проходящей через другую прямую параллельно первой".
Опустим перпендикуляры АА1 и ВВ1 на противоположные основания. Тогда плоскость АА1ВВ1 будет плоскостью, проходящей через прямую АВ параллельно оси цилиндра (так как АА1 и ВВ1 параллельны оси). Следовательно, искомое расстояние - это перпендикуляр ОН, проведенный из центра основания О к хорде АВ1 и по свойству такого перпендикуляра делящий эту хорду пополам.
Найдем по Пифагору длину хорды АВ1: АВ1=√(8²-6²)=2√7. Теперь найдем из треугольника АОН по Пифагору искомое расстояние ОН. ОН=√(АО²-АН²)=√(16-7)=3.
Ответ: расстояние от отрезка АВ до оси цилиндра равно 3.

0
·
Хороший ответ
17 января 2023 12:26
Остались вопросы?
Еще вопросы по категории Геометрия
Треугольник CDE задан координатами своих вершин: C(2; 2), D(6;5), E(5; -2) А) Докажите, что треугольник CDE-равнобедренный. Б) Найдете бесектрису, пр...
К окружности, вписанной в треугольник ABC проведены три касательные. Периметры отсечённых треугольников равны 10, 12, 7. Найдите периметр данного треу...
Сумма вертикальных углов АОВ и СОD, образованных при пересечении прямых АD и ВС, равна 108 0 . Найдите угол ВОD . Можно рисунком? заранее спасибо....
Дан треугольник АВС. Плоскость, пересекая стороны АС и ВС треугольника АВС соответственно в точках А 1 и В 1 , делит их в отношении АА 1 :А 1 С= ВВ...
Помогите пожалуйста с геометрией...