Лучшие помощники
15 января 2023 13:52
558

Найдите площадь боковой поверхности правильной треугольной усеченной пирамиды, стороны оснований которой равны 3 и 11 см, а боковое ребро 5 см

1 ответ
Посмотреть ответы

Боковая поверхность правильной усеченной пирамиды равна произведению полусуммы периметров оснований на апофему:


Sбок=1/2(p1+ p2) a
где р1 и р2 - периметры оснований, а- апофема ( высота боковой грани)

Полусумму периметров оснований найти очень просто. Каждое из них имеет 3 стороны, поэтому
3·(3+11):2= 42:2=21 см

Боковая грань правильной усеченной пирамиды - равнобедренная трапеция.

Апофему найдем по теореме Пифагора из треугольника, в котором боковаое ребро - гипотенуза, апофема и полуразность оснований трапеции - катеты.
=5² -( (11-3):2)²=5²-4²=9
h=√ 9=3 см

Sбок=21·3=63 см²
0
·
Хороший ответ
17 января 2023 13:52
Остались вопросы?
Найти нужный