Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 860 б
Рассмотрим правильный тетраэдр, вписанный в сферу радиуса $R$. Ребро такого тетраэдра равно $\sqrt{2}R$. Около правильного тетраэдра можно описать цилиндр, основанием которого является описанная окружность, а высота равна $2R$.
Так как сторона тетраэдра равна 1, то радиус описанной окружности равен половине диагонали грани тетраэдра, то есть $\frac{\sqrt{2}}{2}$. Значит, радиус цилиндра равен $\frac{\sqrt{2}}{2}$.
Так как высота цилиндра равна удвоенному радиусу описанной окружности правильного тетраэдра, то высота цилиндра равна $2\cdot R = 2\cdot\frac{1}{\sqrt{2}} = \sqrt{2}$.
Итак, радиус цилиндра равен $\frac{\sqrt{2}}{2}$, а высота цилиндра равна $\sqrt{2}$.
Так как сторона тетраэдра равна 1, то радиус описанной окружности равен половине диагонали грани тетраэдра, то есть $\frac{\sqrt{2}}{2}$. Значит, радиус цилиндра равен $\frac{\sqrt{2}}{2}$.
Так как высота цилиндра равна удвоенному радиусу описанной окружности правильного тетраэдра, то высота цилиндра равна $2\cdot R = 2\cdot\frac{1}{\sqrt{2}} = \sqrt{2}$.
Итак, радиус цилиндра равен $\frac{\sqrt{2}}{2}$, а высота цилиндра равна $\sqrt{2}$.
0
·
Хороший ответ
2 мая 2023 03:03
Остались вопросы?
Еще вопросы по категории Геометрия
Площадь сечения шара плоскостью, проведенной через конец диаметра под углом 30 градусов к нему, равна 75п см^2. Найти диаметр шара....
Определите угол при вершине осевого сечения конуса, если разверткой его боковой поверхности являеться сектор с дугой, равной 120 градусов....
Решите пж я вообще тупой...
Основанием прямого параллелепипеда является ромб со стороной 4 и острым углом 60 .Меньшая диагональ п...
Чему равен объем правильной треугольной призмы со стороной основания a и расстоянием от вершины одного основания до противолежащей стороны другого осн...