Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
Для решения задачи нам необходимо знать боковую грань пирамиды. Эта грань является прямоугольным треугольником ОРС, где ОР — высота боковой грани, ОС — одна из боковых сторон основания, ОР и ОС перпендикулярны.
Из теоремы Пифагора для треугольника ОРС:
$OR^2 = OP^2 - PR^2 = (\frac{OD}{2})^2 - RO^2 = 2^2 - 8^2 = -60$
Так как $OR$ является длиной отрезка, то ее значение не может быть отрицательным. Значит, такой треугольник не существует, и задача не имеет решения.
Из теоремы Пифагора для треугольника ОРС:
$OR^2 = OP^2 - PR^2 = (\frac{OD}{2})^2 - RO^2 = 2^2 - 8^2 = -60$
Так как $OR$ является длиной отрезка, то ее значение не может быть отрицательным. Значит, такой треугольник не существует, и задача не имеет решения.
0
·
Хороший ответ
1 мая 2023 06:48
Остались вопросы?
Еще вопросы по категории Геометрия
Прямоугольный параллелепипед у которого все рёбра ровны...
https://539619.selcdn.ru/cdn-znarium-com/qa/4f1b1763c8c92594-2cc3468d.png...
Утверждение "Прямоугольник - это параллелограмм, у которого все углы прямые" является признаком параллелограмма свойством прямоугольника определение...
Укажите номера верных утверждений.1) Через любую точку проходит не менее одной прямой.2) Если при пересечении двух прямых третьей пря...
Какие из следующих утверждений верны? 1) в тупоугольном треугольнике все углы тупые 2) существуют три прямые, которые проходят через одну точку 3) пло...