Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
2 апреля 2023 03:27
530
Все стороны правильного треугольника касаются сферы диаметром 4 дм, плоскость треугольника удалена на расстоянии 1 дм от центра сферы. Найдите сторону треугольника.
1
ответ
Все стороны правильного треугольника касаются сферы диаметром 4 дм, плоскость треугольника удалена на расстоянии 1 дм от центра сферы. Найдите сторону треугольника.
Любое сечение сферы плоскостью - окружность.
Плоскость треугольника АВС пересекает сферу по линии, являющейся окружностью с центром М (рис.1),
Сделаем схематический рисунок (рис.2)
Т.к. диаметр сферы=4 дм, ее радиус ОН равен 2 дм
ОМ=1 дм, ОН=2 дм
НМ=r
По т.Пифагора
r=√(2²-1²)=√3
Радиус вписанной в правильный треугольник окружности (а сечение сферы - вписанная в данный треугольник окружность) равен 1/3 высоты треугольника. (рис.3)
Тогда высота треугольника СН=3*√3
Сторона правильного треугольника равна частному от деления его высоты на синус 60º
АВ=АС=СВ=[3√3):√3]:2
АВ=6 дм
Любое сечение сферы плоскостью - окружность.
Плоскость треугольника АВС пересекает сферу по линии, являющейся окружностью с центром М (рис.1),
Сделаем схематический рисунок (рис.2)
Т.к. диаметр сферы=4 дм, ее радиус ОН равен 2 дм
ОМ=1 дм, ОН=2 дм
НМ=r
По т.Пифагора
r=√(2²-1²)=√3
Радиус вписанной в правильный треугольник окружности (а сечение сферы - вписанная в данный треугольник окружность) равен 1/3 высоты треугольника. (рис.3)
Тогда высота треугольника СН=3*√3
Сторона правильного треугольника равна частному от деления его высоты на синус 60º
АВ=АС=СВ=[3√3):√3]:2
АВ=6 дм

0
·
Хороший ответ
4 апреля 2023 03:27
Остались вопросы?
Еще вопросы по категории Геометрия
Через любые две различные точки плоскости можно провести не более одной окружности?...
Сформулируйте основные свойства площадей многоугольника...
Найдите площадь квадрата, описанного около окружности радиуса 14. Вместе с условием....
Как называется точка пересечения высот треугольника?Где она может лежать?...
Дана трапеция ABCD. На ее боковой стороне CD выбрана точка M так, что CM к MD=4 к 3. Оказалось, что отрезок BM делит диагональ AC на два отрезка, отно...