Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
2 апреля 2023 08:36
660
найдите стороны равнобедренного треугольника, если его периметр =54 см, а высота, проведенная к основанию, - 9 см
1
ответ
Дано: △ABC - равнобедренный (AB=CB); BH - высота; BH = 9см; P(ABC) = 54см.
Найти: AB, BC, AC.
Решение:
Пусть AB = x см.
P(ABC) = AB+BC+AC;
AC = P(ABC)-2·AB;
AC = 54-2x см.
△AHB - прямоугольный (∠H=90°), тогда по теореме Пифагора получим:
AB² = AH²+BH²;
x² = (27-x)²+9²;
x² = 27²-54x+x²+9²;
54x = 3²·9²+9² = 10·81;
54x = 2·5·3·27;
x =
AB = 15см;
BC = AB = 15см;
AC = 54-2·15 = 54-30 = 24 см.
Ответ: 15см, 15см и 24см.
Найти: AB, BC, AC.
Решение:
Пусть AB = x см.
P(ABC) = AB+BC+AC;
AC = P(ABC)-2·AB;
AC = 54-2x см.
- Высота равнобедренного треугольника, проведённая к его основанию, является так же медианой.
△AHB - прямоугольный (∠H=90°), тогда по теореме Пифагора получим:
AB² = AH²+BH²;
x² = (27-x)²+9²;
x² = 27²-54x+x²+9²;
54x = 3²·9²+9² = 10·81;
54x = 2·5·3·27;
x =
AB = 15см;
BC = AB = 15см;
AC = 54-2·15 = 54-30 = 24 см.
Ответ: 15см, 15см и 24см.

0
·
Хороший ответ
4 апреля 2023 08:36
Остались вопросы?
Еще вопросы по категории Геометрия
Чему равен коэффициент подобия подобных треугольников, если отношение их площадей равно а?...
Биссектриса угла D параллелограмма ABCD пересекает диагональ АС в точке К. Найдите, в каком отношении прямая ВК делит сторону CD, считая от вершины С,...
Ребро куба равно а. Найдите расстояние между скрещивающими- ся прямыми, содержащими: а) диагональ куба и ребро куба; б) диагональ куба и диагональ гра...
В основании пирамиды лежит квадрат. Высота пирамиды, равная ребру основания, проходит через центр основания. Найди боковое ребро пирамиды, если высота...
В треугольнике ABC точка K на стороне AC, точка P на стороне BC. AP и BK пересекаются в точке O. AK=(1/3)*AC, BP=(2/3)*BC. Площадь треугольника ABC ра...