Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 865 б
2 апреля 2023 11:24
666
Основание пирамиды - ромб с тупым углом α. Все двугранные углы при основании пирамиды равны β. Найдите площать полной поверхности пирамиды, если её высота равна H. Буду очень благодарен тому, кто решит эту задачу.
1
ответ
Высота боковой грани нашей пирамиды равна (из прямоугольного треугольника SPO) SP= SO/Sinβ или
SP=H/Sinβ.
Из этого же треугольника катет ОР=Н/tgβ.
Но ОР - это половина высоты ромба, проведенной через его центр - точку О пересечения диагоналей.
Следовательно, высота ромба равна 2Н/tgβ.
Острый угол основания (ромба) равен (180-α)° (так как углы ромба, прилежащие к одной стороне, равны в сумме 180°).
Заметим, что Sin(180-α) = Sinα (формула приведения).
Тогда сторона ромба из прямоугольного треугольника АВТ, где ВТ - высота ромба, проведенная из вершины тупого угла), равна АВ=ВТ/Sinα. Или АВ=2Н/(Sinα*tgβ).
Площадь основания (ромба) равна So=а²Sinα. Или
So=4Н²/(Sinα*tg²β).
Площадь боковой грани пирамиды равана
Sг=(1/2)a*Hг=(1/2)*2Н/(Sinα*tgβ)*(H/Sinβ)=Н²/(Sinα*tgβ*Sinβ).
Тогда площадь полной поверхности пирамиды равна
S=4Н²/(Sinα*tg²β) + 4Н²/(Sinα*tgβ*Sinβ) =(4Н²/(Sinα*tgβ))*(1/tgβ+1/Sinβ) = 4Н²*Cosβ(1+Cosβ)/Sinα*Sin²β.
Применив формулу ctg(β/2) = (1+Cosβ)/Sinβ, получим:
S=4Н²*ctgβ*ctg(β/2)/Sinα.
SP=H/Sinβ.
Из этого же треугольника катет ОР=Н/tgβ.
Но ОР - это половина высоты ромба, проведенной через его центр - точку О пересечения диагоналей.
Следовательно, высота ромба равна 2Н/tgβ.
Острый угол основания (ромба) равен (180-α)° (так как углы ромба, прилежащие к одной стороне, равны в сумме 180°).
Заметим, что Sin(180-α) = Sinα (формула приведения).
Тогда сторона ромба из прямоугольного треугольника АВТ, где ВТ - высота ромба, проведенная из вершины тупого угла), равна АВ=ВТ/Sinα. Или АВ=2Н/(Sinα*tgβ).
Площадь основания (ромба) равна So=а²Sinα. Или
So=4Н²/(Sinα*tg²β).
Площадь боковой грани пирамиды равана
Sг=(1/2)a*Hг=(1/2)*2Н/(Sinα*tgβ)*(H/Sinβ)=Н²/(Sinα*tgβ*Sinβ).
Тогда площадь полной поверхности пирамиды равна
S=4Н²/(Sinα*tg²β) + 4Н²/(Sinα*tgβ*Sinβ) =(4Н²/(Sinα*tgβ))*(1/tgβ+1/Sinβ) = 4Н²*Cosβ(1+Cosβ)/Sinα*Sin²β.
Применив формулу ctg(β/2) = (1+Cosβ)/Sinβ, получим:
S=4Н²*ctgβ*ctg(β/2)/Sinα.

0
·
Хороший ответ
4 апреля 2023 11:24
Остались вопросы?
Еще вопросы по категории Геометрия
Выразите метр в аршинах и саженях. ОООЧЕНЬ СРОЧНО Заранее,большое спасибо:*...
2. В треугольнике два угла равны 72° и 42°. Найдите его третий угол. Ответ дайте в градусах....
Окружность и прямая касаются в точке N. Точка O — центр окружности. Угол между касательной и хордой TN равен 62°.Найди угол OTN, ответ дай в...
периметр равнобедренной трапеции равен 28 см, большее основание равно 10 см. Диагональ трапеции делит ее острый угол пополам. Найдите длину меньше осн...
Существует ли треугольник со сторонами: 1) 5 см, 9 см, 14 см. 2) 6 см, 8 см, 15 см? Ответ обоснуйте...