Лучшие помощники
- Megamozg 2200 б
- Matalya1 1800 б
- DevAdmin 1705 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 860 б
2 апреля 2023 11:24
622
Основание пирамиды - ромб с тупым углом α. Все двугранные углы при основании пирамиды равны β. Найдите площать полной поверхности пирамиды, если её высота равна H. Буду очень благодарен тому, кто решит эту задачу.
1
ответ
Высота боковой грани нашей пирамиды равна (из прямоугольного треугольника SPO) SP= SO/Sinβ или
SP=H/Sinβ.
Из этого же треугольника катет ОР=Н/tgβ.
Но ОР - это половина высоты ромба, проведенной через его центр - точку О пересечения диагоналей.
Следовательно, высота ромба равна 2Н/tgβ.
Острый угол основания (ромба) равен (180-α)° (так как углы ромба, прилежащие к одной стороне, равны в сумме 180°).
Заметим, что Sin(180-α) = Sinα (формула приведения).
Тогда сторона ромба из прямоугольного треугольника АВТ, где ВТ - высота ромба, проведенная из вершины тупого угла), равна АВ=ВТ/Sinα. Или АВ=2Н/(Sinα*tgβ).
Площадь основания (ромба) равна So=а²Sinα. Или
So=4Н²/(Sinα*tg²β).
Площадь боковой грани пирамиды равана
Sг=(1/2)a*Hг=(1/2)*2Н/(Sinα*tgβ)*(H/Sinβ)=Н²/(Sinα*tgβ*Sinβ).
Тогда площадь полной поверхности пирамиды равна
S=4Н²/(Sinα*tg²β) + 4Н²/(Sinα*tgβ*Sinβ) =(4Н²/(Sinα*tgβ))*(1/tgβ+1/Sinβ) = 4Н²*Cosβ(1+Cosβ)/Sinα*Sin²β.
Применив формулу ctg(β/2) = (1+Cosβ)/Sinβ, получим:
S=4Н²*ctgβ*ctg(β/2)/Sinα.
SP=H/Sinβ.
Из этого же треугольника катет ОР=Н/tgβ.
Но ОР - это половина высоты ромба, проведенной через его центр - точку О пересечения диагоналей.
Следовательно, высота ромба равна 2Н/tgβ.
Острый угол основания (ромба) равен (180-α)° (так как углы ромба, прилежащие к одной стороне, равны в сумме 180°).
Заметим, что Sin(180-α) = Sinα (формула приведения).
Тогда сторона ромба из прямоугольного треугольника АВТ, где ВТ - высота ромба, проведенная из вершины тупого угла), равна АВ=ВТ/Sinα. Или АВ=2Н/(Sinα*tgβ).
Площадь основания (ромба) равна So=а²Sinα. Или
So=4Н²/(Sinα*tg²β).
Площадь боковой грани пирамиды равана
Sг=(1/2)a*Hг=(1/2)*2Н/(Sinα*tgβ)*(H/Sinβ)=Н²/(Sinα*tgβ*Sinβ).
Тогда площадь полной поверхности пирамиды равна
S=4Н²/(Sinα*tg²β) + 4Н²/(Sinα*tgβ*Sinβ) =(4Н²/(Sinα*tgβ))*(1/tgβ+1/Sinβ) = 4Н²*Cosβ(1+Cosβ)/Sinα*Sin²β.
Применив формулу ctg(β/2) = (1+Cosβ)/Sinβ, получим:
S=4Н²*ctgβ*ctg(β/2)/Sinα.
0
·
Хороший ответ
4 апреля 2023 11:24
Остались вопросы?
Еще вопросы по категории Геометрия
периметр треугольника равен 48 см а одна из сторон равна 18см. найдите две другие , если их разность равна 4,6 см...
В прямоугольном треугольнике АВК гипотенуза АВ равна 13, катет ВК равен 5. Найдите косинус угла А....
2 задание: cos 180 градусов sin 90 градусов...
Найдите величину острого угла параллелограмма ABCD, если биссектриса угла A образует со стороной BC угол, равный 15 градусам. Ответ дайте в градусах....
Геометрия Площадь осевого сечения цилиндра равна 10м2, площадь основания 5м2. Найдите высоту цилиндра....
Все предметы