Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
2 апреля 2023 19:10
890
Окружности радиусов 42 и 84 касаются внешним образом. Точки A и B лежат на первой окружности, точки C и D — на второй. При этом AC и BD — общие касательные окружностей. Найдите расстояние между прямыми AB и CD.
1
ответ
Расстояние между центрами окружностей равно 42 + 84 = 126.
Синус угла наклона касательной к линии центров равно:
sin α = (84-42)/126 =42/126 = 1/3.
Тогда искомое расстояние L между хордами АВ и СД равно:
L = 126 + (42*(1/3)) - (84*(1/3)) =126 + 14 - 28 = 112.
Синус угла наклона касательной к линии центров равно:
sin α = (84-42)/126 =42/126 = 1/3.
Тогда искомое расстояние L между хордами АВ и СД равно:
L = 126 + (42*(1/3)) - (84*(1/3)) =126 + 14 - 28 = 112.
0
·
Хороший ответ
4 апреля 2023 19:10
Остались вопросы?
Еще вопросы по категории Геометрия
Найти меньшую высоту треугольника со сторонами 13, 14, 15....
Найти углы равнобедренного треугольника, если угол, противолежащий основанию равен 133° Помогите пожалуйста!Срочно!...
Средняя линия треугольника теорема о средней линии треугольника формулировка и доказательство...
Радиус описанной около равностороннего треугольника окружности равен 8см. Найдите периметр этого треугольника и радиус вписанной окружности. ВСЁ ПОДРО...
На окружности по разные стороны от диаметра AB взяты точки M и N. Известно, что ∠NBA=32°. Найдите угол NMB. Ответ дайте в градусах...