Лучшие помощники
- Megamozg 2200 б
- Matalya1 1800 б
- DevAdmin 1705 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 860 б
2 апреля 2023 22:06
828
Пожалуйста,помогите
cos^2 (пи/4 + x) = cos^2 (пи/4 -x) -√3cos x
1
ответ
Cos²(π/4+x)=cos²(π/4 -x) -√3cosx
(cosπ/4 cosx - sinπ/4 sinx)² = (cosπ/4 cosx + sinπ/4 sinx)² -√3cosx
(√2/2 (cosx-sinx))² - (√2/2 (cosx + sinx))² +√3cosx=0
(√2/2)² ((cos-sinx)² - (cosx+sinx)²) +√3cosx=0
(2/4) ((cosx-sinx-cosx-sinx)(cosx-sinx+cosx+sinx)) +√3cosx=0
(1/2) (-2sinx * 2cosx) +√3cosx=0
-2sinx cosx +√3cosx=0
cosx (-2sinx +√3) =0
cosx=0 -2sinx +√3=0
x=π/2+πn, n∈Z -2sinx=-√3
sinx=√3/2
x=(-1)^n * (π/3) +πn, n∈Z
Ответ: х=π/2 +πn, n∈Z,
x=(-1)^n * (π/3) +πn, n∈Z.
(cosπ/4 cosx - sinπ/4 sinx)² = (cosπ/4 cosx + sinπ/4 sinx)² -√3cosx
(√2/2 (cosx-sinx))² - (√2/2 (cosx + sinx))² +√3cosx=0
(√2/2)² ((cos-sinx)² - (cosx+sinx)²) +√3cosx=0
(2/4) ((cosx-sinx-cosx-sinx)(cosx-sinx+cosx+sinx)) +√3cosx=0
(1/2) (-2sinx * 2cosx) +√3cosx=0
-2sinx cosx +√3cosx=0
cosx (-2sinx +√3) =0
cosx=0 -2sinx +√3=0
x=π/2+πn, n∈Z -2sinx=-√3
sinx=√3/2
x=(-1)^n * (π/3) +πn, n∈Z
Ответ: х=π/2 +πn, n∈Z,
x=(-1)^n * (π/3) +πn, n∈Z.
0
·
Хороший ответ
4 апреля 2023 22:06
Остались вопросы?
Еще вопросы по категории Алгебра
А) Решите уравнение √3sin2x+3cos2x=3 б) найдите все корни на промежутке [3п/2;3п]...
Постройте в одной системе координат графики функций y=√x и y=√x-2 + 3...
Сколькими способами можно выбрать 3 конфеты из 8 различных? Пожалуйста, объясните как решать подобные задачки. у меня плохо развито логик мышление :в...
Решите уравнение 1–sin2x=–(sinx+cosx)...
Решите пожалуйста Корень из 0,5*1/50...
Все предметы