Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
2 апреля 2023 22:06
1017
Пожалуйста,помогите
cos^2 (пи/4 + x) = cos^2 (пи/4 -x) -√3cos x
1
ответ
Cos²(π/4+x)=cos²(π/4 -x) -√3cosx
(cosπ/4 cosx - sinπ/4 sinx)² = (cosπ/4 cosx + sinπ/4 sinx)² -√3cosx
(√2/2 (cosx-sinx))² - (√2/2 (cosx + sinx))² +√3cosx=0
(√2/2)² ((cos-sinx)² - (cosx+sinx)²) +√3cosx=0
(2/4) ((cosx-sinx-cosx-sinx)(cosx-sinx+cosx+sinx)) +√3cosx=0
(1/2) (-2sinx * 2cosx) +√3cosx=0
-2sinx cosx +√3cosx=0
cosx (-2sinx +√3) =0
cosx=0 -2sinx +√3=0
x=π/2+πn, n∈Z -2sinx=-√3
sinx=√3/2
x=(-1)^n * (π/3) +πn, n∈Z
Ответ: х=π/2 +πn, n∈Z,
x=(-1)^n * (π/3) +πn, n∈Z.
(cosπ/4 cosx - sinπ/4 sinx)² = (cosπ/4 cosx + sinπ/4 sinx)² -√3cosx
(√2/2 (cosx-sinx))² - (√2/2 (cosx + sinx))² +√3cosx=0
(√2/2)² ((cos-sinx)² - (cosx+sinx)²) +√3cosx=0
(2/4) ((cosx-sinx-cosx-sinx)(cosx-sinx+cosx+sinx)) +√3cosx=0
(1/2) (-2sinx * 2cosx) +√3cosx=0
-2sinx cosx +√3cosx=0
cosx (-2sinx +√3) =0
cosx=0 -2sinx +√3=0
x=π/2+πn, n∈Z -2sinx=-√3
sinx=√3/2
x=(-1)^n * (π/3) +πn, n∈Z
Ответ: х=π/2 +πn, n∈Z,
x=(-1)^n * (π/3) +πn, n∈Z.
0
·
Хороший ответ
4 апреля 2023 22:06
Остались вопросы?
Еще вопросы по категории Алгебра
В прямоугольном параллелепипеде ABCDA1B1C1D1 известны длины рёбер: AB=21; AD=20; AA1=23. Найдите площадь сечения, проходящего через вершины A, A1, C....
Для функції f(х)=cos6x-sin6x,знайдіть f`(Пі/8)...
Буду очень благодарна....
Начертите неразвернутый угол hk. Постройте угол h1k1 так,чтобы углы hk и h1k1 были вертикальными....
По условию задачи составьте выражение с переменными. Коля купил m карандашей по 12 рублей и 14 тетрадей по n рублей , заплатив за тетради больше чем з...