Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
1 сентября 2022 20:26
1156
Ребро правильного тетраэдра DABC равно а. Постройте сечение тетраэдра, проходящее через середины ребер DA и AB параллельно ребру BC, и найдите площадь этого сечения.
1
ответ
Ребро правильного тетраэдра DABC равно а.
Постройте сечение тетраэдра, проходящее через середины ребер DA и AB параллельно ребру BC, и найдите площадь этого сечения.
––––––––––––––––––––––––
Тетраэдр называется правильным, если все его грани — равносторонние треугольники.
Сечение пройдет через середины ребер АD и АВ по линии D1B1– это средняя линия ∆ АВD.
Сечение, параллельное ВС - проходит через В1С1 – среднюю линию ∆ АВС.
Каждая сторона построенного сечения - средняя линия треугольника. ограничивающего грань тетраэдра, и по свойству средней линии равна а/2,
т.е. проведенное через середины ребер сечение - правильный треугольник со сторонами, равными а/2
Его площадь найдем по формуле площади равностороннего треугольника:
S=(a²√3):4
S=(a/2)²√3):4=(a²√3):16
_______________
Вариант решения:
Треугольник. получившийся в сечении, подобен треугольнику ВСD с коэффициентом подобия
k=( а/2):а=1/2
Отношение площадей подобных фигур равно квадрату коэффициента их подобия.
S1:S=k²=1/4
S ∆ CDB=(a²√3):4
S сечения в 4 раза меньше и равно (a²√3):16
Постройте сечение тетраэдра, проходящее через середины ребер DA и AB параллельно ребру BC, и найдите площадь этого сечения.
––––––––––––––––––––––––
Тетраэдр называется правильным, если все его грани — равносторонние треугольники.
Сечение пройдет через середины ребер АD и АВ по линии D1B1– это средняя линия ∆ АВD.
Сечение, параллельное ВС - проходит через В1С1 – среднюю линию ∆ АВС.
Каждая сторона построенного сечения - средняя линия треугольника. ограничивающего грань тетраэдра, и по свойству средней линии равна а/2,
т.е. проведенное через середины ребер сечение - правильный треугольник со сторонами, равными а/2
Его площадь найдем по формуле площади равностороннего треугольника:
S=(a²√3):4
S=(a/2)²√3):4=(a²√3):16
_______________
Вариант решения:
Треугольник. получившийся в сечении, подобен треугольнику ВСD с коэффициентом подобия
k=( а/2):а=1/2
Отношение площадей подобных фигур равно квадрату коэффициента их подобия.
S1:S=k²=1/4
S ∆ CDB=(a²√3):4
S сечения в 4 раза меньше и равно (a²√3):16

0
·
Хороший ответ
1 сентября 2022 20:26
Остались вопросы?
Еще вопросы по категории Геометрия
1) Сколько существует отрезков концами которых являются 2 данные точки ? 2) Из каких точек состоит отрезок AB ? 3) Какие длины имеют равные отрезки ?...
Какие из следующих утверждений верны? 1) в тупоугольном треугольнике все углы тупые 2) существуют три прямые, которые проходят через одну точку 3) пло...
СРОЧНО!!!!!!!!!!! Круговой сектор ограничен радиусами, равными 4см, и дугой в 60°. Найдите площадь круга, вписанного в этот сектор....
1. что показывает коэффициент подобия? 2. как найти коэффициент подобия? 3. чему равно отношение площадей двух подобных треугольников? 4. чему равно о...
ABCD-параллелограмм. EC=3, AB=7, Найти площадь параллелограмма. Варианты ответов: A) 7 B) 10 C) 14 D) 21 E) 28 (Нужно решение)...