Лучшие помощники
- Megamozg 2200 б
- Matalya1 1800 б
- DevAdmin 1700 б
- arkasha_bortnikov 890 б
- Dwayne_Johnson 860 б
3 апреля 2023 11:13
496
ВОПРОСЫ1. Дайте определение понятия угла между векторами.
2. Что называется скалярным произведением двух векторов?
3. Чему равен скалярный квадрат вектора?
4. Перечислите свойства скалярного произведения двух векторов. 5. Сформулируйте условие перпендикулярности двух векторов.
6. При каком условии скалярное произведение двух векторов равно. а) отрицательному числу; б) положительному числу?
1
ответ
Ответ:
1.
Угол между векторами — угол между направлениями этих векторов (наименьший угол). По определению, угол между двумя векторами находится в промежутке [0°; 180°]. Если векторы перпендикулярны, то угол между ними равен 90º. Если векторы сонаправлены, в частности один из них или оба нулевые, то угол между ними равен 0о.
2.Два вектора называются перпендикулярными, если угол между ними равен 90°. Скалярным произведением двух векторов называется число, равное произведению длин этих векторов на косинус угла между ними.
3.скалярный квадрат вектора равен квадрату его длины.
4.Определение. Скалярным произведением двух векторов называется действительное число, равное произведению длин умножаемых векторов на косинус угла между ними. ... Скалярное произведение вектора на себя называется скалярным квадратом.
5.Векторы являются перпендикулярными тогда и только тогда, когда их скалярное произведение равно нулю. Даны два вектора ⃗a(xa;ya) a → ( x a ; y a ) и ⃗b(xb;yb) b → ( x b ; y b ) . Эти векторы будут перпендикулярны, если выражение xaxb + yayb = 0.
6.Таким образом, для определения векторного произведения двух векторов необходимо задать ориентацию пространства, то есть сказать, какая тройка векторов является правой, а какая — левой. При этом не является обязательным задание в рассматриваемом пространстве какой-либо системы координат. В частности, при заданной ориентации пространства результат векторного произведения не зависит от того, является ли рассматриваемая система координат правой или левой. При этом формулы выражения координат векторного произведения через координаты исходных векторов в правой и левой ортонормированной прямоугольной системе координат отличаются знаком.
Векторное произведение не обладает свойствами коммутативности и ассоциативности. Оно является антикоммутативным и, в отличие от скалярного произведения векторов, результат является опять вектором.
1.
Угол между векторами — угол между направлениями этих векторов (наименьший угол). По определению, угол между двумя векторами находится в промежутке [0°; 180°]. Если векторы перпендикулярны, то угол между ними равен 90º. Если векторы сонаправлены, в частности один из них или оба нулевые, то угол между ними равен 0о.
2.Два вектора называются перпендикулярными, если угол между ними равен 90°. Скалярным произведением двух векторов называется число, равное произведению длин этих векторов на косинус угла между ними.
3.скалярный квадрат вектора равен квадрату его длины.
4.Определение. Скалярным произведением двух векторов называется действительное число, равное произведению длин умножаемых векторов на косинус угла между ними. ... Скалярное произведение вектора на себя называется скалярным квадратом.
5.Векторы являются перпендикулярными тогда и только тогда, когда их скалярное произведение равно нулю. Даны два вектора ⃗a(xa;ya) a → ( x a ; y a ) и ⃗b(xb;yb) b → ( x b ; y b ) . Эти векторы будут перпендикулярны, если выражение xaxb + yayb = 0.
6.Таким образом, для определения векторного произведения двух векторов необходимо задать ориентацию пространства, то есть сказать, какая тройка векторов является правой, а какая — левой. При этом не является обязательным задание в рассматриваемом пространстве какой-либо системы координат. В частности, при заданной ориентации пространства результат векторного произведения не зависит от того, является ли рассматриваемая система координат правой или левой. При этом формулы выражения координат векторного произведения через координаты исходных векторов в правой и левой ортонормированной прямоугольной системе координат отличаются знаком.
Векторное произведение не обладает свойствами коммутативности и ассоциативности. Оно является антикоммутативным и, в отличие от скалярного произведения векторов, результат является опять вектором.
0
·
Хороший ответ
5 апреля 2023 11:13
Остались вопросы?
Еще вопросы по категории Геометрия
Помогите с геометрией плиз. Все грани параллелепипеда – равные ромбы со стороной а и острым углом 60(градусов) Все грани параллелепипеда – равные ром...
2. По рисунку 9 назовите: а) точки, лежащие в плоскостях DCC1 и BQC; Пожалуйста с объяснением,ибо я в плоскостях путаюсь,а мне надо знать!...
равнобедренные треугольники ABC и ABD имеют общее основание AB.Докажите что отрезок CD проходит через середину AB. Пожалуйста напишите подробное доказ...
Кидаю 30 баллов! В треугольник вписана окружность так,что три из шести получившихся отрезков касательных равны 3см,4см,5см. Найдите периметр треугольн...
О - центр окружности, описанной около ДАВС, О, - центр окружности, вписанной в ДАВС. Найти площадь АВС. АВ=ВС, АВ=17,ВС=16...
Все предметы