Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
5 апреля 2023 15:11
746
В треугольнике ABC угол C равен 90 ∘ , tg ( B ) = 21 √ 3 11 . Найдите синус угла A .
1
ответ
Из определения тангенса:
$$\tan(B) = \frac{AC}{BC}$$
Из угла C = 90 градусов следует, что:
$$\tan(B) = \frac{AC}{BC} = \frac{\sin(A)}{\cos(A)}$$
Таким образом, мы можем записать:
$$\tan(B) = \frac{\sin(A)}{\cos(A)} = \frac{21\sqrt{3}}{11}$$
Решая это уравнение, получаем:
$$\sin(A) = \frac{\tan(B)}{\sqrt{1 + \tan^2(B)}} = \frac{21\sqrt{3}}{\sqrt{484 + 693}} = \frac{21\sqrt{3}}{\sqrt{1177}}$$
Упрощая под корнем, получаем:
$$\sin(A) = \frac{21\sqrt{3}}{\sqrt{29 \cdot 41}} = \frac{21\sqrt{3}}{\sqrt{29} \cdot \sqrt{41}} = \frac{21\sqrt{3}}{29\sqrt{3}} = \frac{21}{29}$$
Таким образом, синус угла A равен 21/29.
$$\tan(B) = \frac{AC}{BC}$$
Из угла C = 90 градусов следует, что:
$$\tan(B) = \frac{AC}{BC} = \frac{\sin(A)}{\cos(A)}$$
Таким образом, мы можем записать:
$$\tan(B) = \frac{\sin(A)}{\cos(A)} = \frac{21\sqrt{3}}{11}$$
Решая это уравнение, получаем:
$$\sin(A) = \frac{\tan(B)}{\sqrt{1 + \tan^2(B)}} = \frac{21\sqrt{3}}{\sqrt{484 + 693}} = \frac{21\sqrt{3}}{\sqrt{1177}}$$
Упрощая под корнем, получаем:
$$\sin(A) = \frac{21\sqrt{3}}{\sqrt{29 \cdot 41}} = \frac{21\sqrt{3}}{\sqrt{29} \cdot \sqrt{41}} = \frac{21\sqrt{3}}{29\sqrt{3}} = \frac{21}{29}$$
Таким образом, синус угла A равен 21/29.
0
·
Хороший ответ
5 апреля 2023 15:12
Остались вопросы?
Еще вопросы по категории Геометрия
Перпендикулярно высоте BD треугольника ABC проведена прямая , пересекающая стороны AB и BC в точках M и P соответственно. Найдите AB и отношение площа...
Подкрепить свою позицию ссылкой на конституцию, равные или неравные права у субъектов РФ...
8 класс Самостоятельная работа Вариант 2 Тема: «Признаки подобия треугольников» 1) Дано: А=50˚, С=60˚, С1=60˚, В1=70˚. Доказать: ΔАВС ΔА1В1С...
Какой угол называется вписанным?Сформулируйте и докажите теорему о вписаном угле...
Треугольники ABC и ABD не лежат в одной плоскости. Докажите, что любая прямая, параллельная отрезку CD, пересекает плоскости данных треугольников. (ри...