Лучшие помощники
18 апреля 2023 20:55
188

Найдите площадь боковой поверхности правильной четырехугольной пирамиды, боковое ребро которой равно d, а плоский угол при вершине пирамиды равен альфа.

1 ответ
Посмотреть ответы
Площадь боковой поверхности правильной четырехугольной пирамиды можно найти по формуле:

S = (1/2) * p * l,

где p - периметр основания пирамиды, l - длина бокового ребра.

Для правильной четырехугольной пирамиды периметр основания равен 4 * a, где a - длина стороны основания.

Таким образом,

p = 4 * a

Также из геометрических соображений мы можем найти длину высоты пирамиды h:

h = d * cos(alpha/2)

Теперь мы можем выразить длину бокового ребра через длину высоты:

l = sqrt(d^2 - h^2)

Тогда площадь боковой поверхности будет:

S = (1/2) * p * l = (1/2) * 4 * a * sqrt(d^2 - h^2)

S = 2 * a * sqrt(d^2 - d^2 * cos^2(alpha/2))

S = 2 * a * d * sin(alpha/2)

Ответ: S = 2 * a * d * sin(alpha/2)
1
·
Хороший ответ
18 апреля 2023 20:57
Остались вопросы?
Найти нужный