Лучшие помощники
- Megamozg 2190 б
- Matalya1 1800 б
- DevAdmin 1695 б
- arkasha_bortnikov 860 б
- Dwayne_Johnson 845 б
26 апреля 2023 16:21
961
Катеты равнобедренного прямоугольного треугольника равны 2+√2
Найдите радиус окружности, вписанной в этот треугольник
1
ответ
Радиус вписанной окружности равен половине высоты, опущенной на гипотенузу. Высота равнобедренного прямоугольного треугольника равна среднему геометрическому катетов, то есть:
h = √(катет^2 + катет^2) / 2 = √2 * катет
Значит, выражая катет через высоту:
катет = h / √2
Тогда радиус вписанной окружности будет равен:
r = h / 2 = (h / √2) / 2 = (2 + √2) / 2
Ответ: радиус вписанной окружности равен (2 + √2) / 2.
h = √(катет^2 + катет^2) / 2 = √2 * катет
Значит, выражая катет через высоту:
катет = h / √2
Тогда радиус вписанной окружности будет равен:
r = h / 2 = (h / √2) / 2 = (2 + √2) / 2
Ответ: радиус вписанной окружности равен (2 + √2) / 2.
0
·
Хороший ответ
26 апреля 2023 16:30
Остались вопросы?
Еще вопросы по категории Геометрия
Сторона равностороннего треугольника равна 10 корень из 3. найдите его биссектрису...
В треугольнике ABC угол B равен 120 градусов. Прямая BD перпендикулярна плоскости ABC. Найдите AC, если AD=5 см, CD=2 корень из 5 см, BD=4 см...
сформулировать определение средней линии трапеции. Докозать свойство средней линии трапеции. помогите ссрочно плиз...
В ромбе АВСD на продолжении диагонали АС отмечены точки Т и К так, что отрезки АТ и СК равны и точки Т и К находятся вне ромба. Точки Т и К находятся...
Параллелограммы АВСД и А1В1СД не лежат в одной плоскости. Докажите параллельность плоскостей ВСВ1 и АДА. Помогите.пожалуйста!!!!...
Все предметы