Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 865 б
26 апреля 2023 16:21
1241
Катеты равнобедренного прямоугольного треугольника равны 2+√2
Найдите радиус окружности, вписанной в этот треугольник
1
ответ
Радиус вписанной окружности равен половине высоты, опущенной на гипотенузу. Высота равнобедренного прямоугольного треугольника равна среднему геометрическому катетов, то есть:
h = √(катет^2 + катет^2) / 2 = √2 * катет
Значит, выражая катет через высоту:
катет = h / √2
Тогда радиус вписанной окружности будет равен:
r = h / 2 = (h / √2) / 2 = (2 + √2) / 2
Ответ: радиус вписанной окружности равен (2 + √2) / 2.
h = √(катет^2 + катет^2) / 2 = √2 * катет
Значит, выражая катет через высоту:
катет = h / √2
Тогда радиус вписанной окружности будет равен:
r = h / 2 = (h / √2) / 2 = (2 + √2) / 2
Ответ: радиус вписанной окружности равен (2 + √2) / 2.
0
·
Хороший ответ
26 апреля 2023 16:30
Остались вопросы?
Еще вопросы по категории Геометрия
боковая сторона равнобедренного треугольника равна 6 см.Может ли его основание быть равным 15 см.Почему...
Помогите срочно! В кубе ABCDA1B1C1D1 постройте и найдите линейный угол двугранного угла между плоскостями сечений CD1A1B и DA1B1C...
Какой город расположен севернее других:...
Как найти sin а, зная cos a?...
На стороне AC треугольника ABC отмечена точка D так, что AD=6, DC=10. Площадь треугольника ABC равна 48. Найдите площадь треугольника BCD....