Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
25 мая 2023 10:59
496
Даны точки K (-5;2;3) и L (4;-2;-1). Найдите координаты точки: a) симметричной точке K относительно точки L б) симметричной точке L относительно оси ординат в) симметричной точке K относительно
плоскости Oyz г) полученной при параллельном переносе точки K на вектор LK стрелка вправо
1
ответ
A) Для нахождения симметричной точки K относительно точки L нужно найти вектор, соединяющий эти точки, умножить его на 2 и прибавить координаты точки L. Таким образом, получим:
$\vec{LK} = \begin{pmatrix} 4 - (-5) \\ -2 - 2 \\ -1 - 3 \end{pmatrix} = \begin{pmatrix} 9 \\ -4 \\ -4 \end{pmatrix}$
$2\vec{LK} = \begin{pmatrix} 18 \\ -8 \\ -8 \end{pmatrix}$
Координаты симметричной точки K будут:
$\begin{pmatrix} 4 \\ -2 \\ -1 \end{pmatrix} + \begin{pmatrix} 18 \\ -8 \\ -8 \end{pmatrix} = \begin{pmatrix} 22 \\ -10 \\ -9 \end{pmatrix}$
б) Для нахождения симметричной точки L относительно оси ординат нужно заменить координату x на ее отрицание. Таким образом, получим:
$\begin{pmatrix} -4 \\ -2 \\ 1 \end{pmatrix}$
в) Для нахождения симметричной точки K относительно плоскости Oyz нужно заменить координату x на ее отрицание. Таким образом, получим:
$\begin{pmatrix} -5 \\ 2 \\ 3 \end{pmatrix}$
г) Для нахождения точки, полученной при параллельном переносе точки K на вектор LK стрелка вправо, нужно прибавить вектор LK к вектору, задающему координаты точки K:
$\vec{K} = \begin{pmatrix} -5 \\ 2 \\ 3 \end{pmatrix}$
$\vec{KL} = \begin{pmatrix} 9 \\ -4 \\ -4 \end{pmatrix}$
$\vec{K} + \vec{KL} = \begin{pmatrix} -5 \\ 2 \\ 3 \end{pmatrix} + \begin{pmatrix} 9 \\ -4 \\ -4 \end{pmatrix} = \begin{pmatrix} 4 \\ -2 \\ -1 \end{pmatrix}$
$\vec{LK} = \begin{pmatrix} 4 - (-5) \\ -2 - 2 \\ -1 - 3 \end{pmatrix} = \begin{pmatrix} 9 \\ -4 \\ -4 \end{pmatrix}$
$2\vec{LK} = \begin{pmatrix} 18 \\ -8 \\ -8 \end{pmatrix}$
Координаты симметричной точки K будут:
$\begin{pmatrix} 4 \\ -2 \\ -1 \end{pmatrix} + \begin{pmatrix} 18 \\ -8 \\ -8 \end{pmatrix} = \begin{pmatrix} 22 \\ -10 \\ -9 \end{pmatrix}$
б) Для нахождения симметричной точки L относительно оси ординат нужно заменить координату x на ее отрицание. Таким образом, получим:
$\begin{pmatrix} -4 \\ -2 \\ 1 \end{pmatrix}$
в) Для нахождения симметричной точки K относительно плоскости Oyz нужно заменить координату x на ее отрицание. Таким образом, получим:
$\begin{pmatrix} -5 \\ 2 \\ 3 \end{pmatrix}$
г) Для нахождения точки, полученной при параллельном переносе точки K на вектор LK стрелка вправо, нужно прибавить вектор LK к вектору, задающему координаты точки K:
$\vec{K} = \begin{pmatrix} -5 \\ 2 \\ 3 \end{pmatrix}$
$\vec{KL} = \begin{pmatrix} 9 \\ -4 \\ -4 \end{pmatrix}$
$\vec{K} + \vec{KL} = \begin{pmatrix} -5 \\ 2 \\ 3 \end{pmatrix} + \begin{pmatrix} 9 \\ -4 \\ -4 \end{pmatrix} = \begin{pmatrix} 4 \\ -2 \\ -1 \end{pmatrix}$
0
·
Хороший ответ
25 мая 2023 11:00
Остались вопросы?
Еще вопросы по категории Геометрия
Сторона квадрата равна 10. Найдите его площадь....
У треугольника со сторонами 9 и 6 проведены высоты к этим сторонам . Высота , проведенная к первой стороне , равна 4. Чему равна высота , проведенная...
Найдите отношение площадей треугольников АВС и PQR, если АВ=12 см, ВС=15 см, АС=21 см, QR=20 см, PR=28 см, PQ=16 см....
В Равнобедренной трапеции диагональ составляет с боковой стороной угол-120 градусов,боковая сторона равно меньшему основанию.Найти углы трапеции...
Две стороны треугольника равны 3 и 5, а один из углов - 60°. Какому значению может быть равна третья сторона? Может Не может 4 7 корень из 19...