Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
2 мая 2023 06:22
644
В окружность вписан треугольник ABC. Известно, что ∠A=52°,∠B=68° и AB=5√3. Найди радиус данной окружности.
1
ответ
Известно, что вписанный угол равен половине соответствующего центрального угла, поэтому угол ACB равен 2*68°=136°. Также из треугольника ABС следует, что ∠C=180°-52°-68°=60°.
Радиус окружности можно найти по формуле:
R = AB / (2 * sin(∠ACB/2))
R = 5√3 / (2 * sin(68°))
R ≈ 5.42
Ответ: радиус данной окружности ≈ 5.42.
Радиус окружности можно найти по формуле:
R = AB / (2 * sin(∠ACB/2))
R = 5√3 / (2 * sin(68°))
R ≈ 5.42
Ответ: радиус данной окружности ≈ 5.42.
0
·
Хороший ответ
2 мая 2023 06:24
Остались вопросы?
Еще вопросы по категории Геометрия
Две стороны треугольника равны 25 см и 30 см, а площадь 300см квадратных. Найти третью сторону треугольника...
Высота, проведенная к основанию равнобедренного треугольника, равна 9 см, а само основание равно, 24 см. Найдите радиусы вписанной в треугольник и опи...
Как сделать пирамиду (геометрическая фигура) из бумаги БЕЗ КЛЕЯ?...
Дан параллелограмм ABCD. Выразите вектор AC через векторы a и b, если: a) a= AB, b= BC; б) a=CB, b= CD; в) a=AB; b=DA...
Когда на электронных часах 16:00 , то можно сказать: " Сейчас четыре часа ". А что должны показывать часы, чтобы на вопрос: " Который час?" Можно было...