Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
2 мая 2023 06:22
764
В окружность вписан треугольник ABC. Известно, что ∠A=52°,∠B=68° и AB=5√3. Найди радиус данной окружности.
1
ответ
Известно, что вписанный угол равен половине соответствующего центрального угла, поэтому угол ACB равен 2*68°=136°. Также из треугольника ABС следует, что ∠C=180°-52°-68°=60°.
Радиус окружности можно найти по формуле:
R = AB / (2 * sin(∠ACB/2))
R = 5√3 / (2 * sin(68°))
R ≈ 5.42
Ответ: радиус данной окружности ≈ 5.42.
Радиус окружности можно найти по формуле:
R = AB / (2 * sin(∠ACB/2))
R = 5√3 / (2 * sin(68°))
R ≈ 5.42
Ответ: радиус данной окружности ≈ 5.42.
0
·
Хороший ответ
2 мая 2023 06:24
Остались вопросы?
Еще вопросы по категории Геометрия
Найдите синус острого угла трапеции,изображенного на рисунке...
В призме ABCA1B1C1 точка М-середина ребра A1B1. Выразите вектор MB через векторы AC, BC и BB1....
Прямая пересекает стороны треугольника ABC в точках М и K соответственно так, что MK || АС, ВМ: АМ= 1 : 4. Найдите периметр треугольника ВМК, если пер...
Найдите объём наклонной треугольной призмы, если расстояния между её боковыми рёбрами равны 37 см, 13 см и 30 см, а площадь боковой поверхности равна...
Равнобокая трапеция с основаниями 9 и 16 см описана около окружности! Найти радиус окружности...