Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
2 мая 2023 06:22
741
В окружность вписан треугольник ABC. Известно, что ∠A=52°,∠B=68° и AB=5√3. Найди радиус данной окружности.
1
ответ
Известно, что вписанный угол равен половине соответствующего центрального угла, поэтому угол ACB равен 2*68°=136°. Также из треугольника ABС следует, что ∠C=180°-52°-68°=60°.
Радиус окружности можно найти по формуле:
R = AB / (2 * sin(∠ACB/2))
R = 5√3 / (2 * sin(68°))
R ≈ 5.42
Ответ: радиус данной окружности ≈ 5.42.
Радиус окружности можно найти по формуле:
R = AB / (2 * sin(∠ACB/2))
R = 5√3 / (2 * sin(68°))
R ≈ 5.42
Ответ: радиус данной окружности ≈ 5.42.
0
·
Хороший ответ
2 мая 2023 06:24
Остались вопросы?
Еще вопросы по категории Геометрия
Осевое сечение цилиндра – квадрат, диагональ которого 4 см. Найдите площадь боковой поверхности цилиндра....
Периметр параллелограмма равен 112 см, адве его стороны относятся как 5:3.Найдите стороны параллелограмма...
Радиус конуса равен 5м, высота 12м. Найдите образующую конуса....
СРОЧНО Трапеция ABCD с основаниями AD и BC описана около окружности, AB=14, BC=8, CD=12. Найдите AD С объясненим...
1)сформулируйте и докажите теорему о разложении вектора по двум не коллинеАрным векторам . 2)объясните,как вводится прямоугольная система координат....