Лучшие помощники
- Megamozg 2190 б
- Matalya1 1800 б
- DevAdmin 1695 б
- arkasha_bortnikov 860 б
- Dwayne_Johnson 845 б
Рассмотрим плоскость прямоугольника ABCD и прямую MC. Так как прямая MC перпендикулярна плоскости ABCD, то она пересекает эту плоскость по некоторой прямой, которая проходит через точку пересечения диагоналей прямоугольника. Обозначим эту точку буквой O.
Так как прямая MC перпендикулярна плоскости ABCD, то она пересекает стороны AB и CD прямоугольника в точках P и Q соответственно (см. рисунок). Обозначим длину отрезка PQ буквой a.
![image.png](attachment:image.png)
Так как треугольник MCP прямоугольный, то по теореме Пифагора:
$PC^2 + CM^2 = PM^2$
$(AB - a)^2 + 4^2 = (BC + a)^2$
$AB^2 - 2ABa + a^2 + 16 = BC^2 + 2BCa + a^2$
$AB^2 - BC^2 + 2a(BC - AB) + 16 = 0$
$a = \frac{BC^2 - AB^2 + 16}{2(BC - AB)} = \frac{81 - 144 + 16}{2(9 - 12)} = -\frac{23}{2}$
Так как a является длиной отрезка PQ, который лежит внутри прямоугольника, то a должно быть положительным числом. Значит, прямая MC не пересекает стороны AB и CD прямоугольника, а точка O лежит на продолжении стороны AB за точку B.
Обозначим длину отрезка OB буквой b. Тогда по теореме Пифагора:
$OC^2 + CM^2 = OM^2$
$b^2 + 16 = (a + 9)^2$
$b^2 + 16 = \left(-\frac{23}{2} + 9\right)^2$
$b^2 + 16 = \frac{64}{4}$
$b^2 = \frac{16}{4} = 4$
$b = 2$
Таким образом, расстояние от точки M до точки пересечения диагоналей прямоугольника равно длине отрезка OM, которая равна:
$OM = OB + BM = 2 + 4 = 6$
Ответ: расстояние от точки M до точки пересечения диагоналей прямоугольника равно 6 см.
Так как прямая MC перпендикулярна плоскости ABCD, то она пересекает стороны AB и CD прямоугольника в точках P и Q соответственно (см. рисунок). Обозначим длину отрезка PQ буквой a.
![image.png](attachment:image.png)
Так как треугольник MCP прямоугольный, то по теореме Пифагора:
$PC^2 + CM^2 = PM^2$
$(AB - a)^2 + 4^2 = (BC + a)^2$
$AB^2 - 2ABa + a^2 + 16 = BC^2 + 2BCa + a^2$
$AB^2 - BC^2 + 2a(BC - AB) + 16 = 0$
$a = \frac{BC^2 - AB^2 + 16}{2(BC - AB)} = \frac{81 - 144 + 16}{2(9 - 12)} = -\frac{23}{2}$
Так как a является длиной отрезка PQ, который лежит внутри прямоугольника, то a должно быть положительным числом. Значит, прямая MC не пересекает стороны AB и CD прямоугольника, а точка O лежит на продолжении стороны AB за точку B.
Обозначим длину отрезка OB буквой b. Тогда по теореме Пифагора:
$OC^2 + CM^2 = OM^2$
$b^2 + 16 = (a + 9)^2$
$b^2 + 16 = \left(-\frac{23}{2} + 9\right)^2$
$b^2 + 16 = \frac{64}{4}$
$b^2 = \frac{16}{4} = 4$
$b = 2$
Таким образом, расстояние от точки M до точки пересечения диагоналей прямоугольника равно длине отрезка OM, которая равна:
$OM = OB + BM = 2 + 4 = 6$
Ответ: расстояние от точки M до точки пересечения диагоналей прямоугольника равно 6 см.
0
·
Хороший ответ
13 мая 2023 13:54
Остались вопросы?
Еще вопросы по категории Геометрия
Одна из сторон параллелограмма в 5 раз больше другой ,а его периметр равен 36 см .Найти стороны параллелограмма ....
В треугольнике MNK проведены высоты КА, NC и МВ, пересекающиеся в точке О. Найдите отрезок NO, если CK = 15 см, ОС = 8 см, AN = 5 см....
Сумма вертикальных углов МОЕ и DOC, образованных при пересечении прямых MC и DE, равна 204° . Найдите угол MOD...
Если один из углов ромба равен 90 градусов,то такой ромб-квадрат.верно ли это утверждение?...
Коля решил починить лампочку в подъезде. Для этого он он прислонил в стене лестницу длинной 3м. На какой высоте находиться лампочка, если расстояние о...
Все предметы