Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 865 б
Рассмотрим плоскость прямоугольника ABCD и прямую MC. Так как прямая MC перпендикулярна плоскости ABCD, то она пересекает эту плоскость по некоторой прямой, которая проходит через точку пересечения диагоналей прямоугольника. Обозначим эту точку буквой O.
Так как прямая MC перпендикулярна плоскости ABCD, то она пересекает стороны AB и CD прямоугольника в точках P и Q соответственно (см. рисунок). Обозначим длину отрезка PQ буквой a.

Так как треугольник MCP прямоугольный, то по теореме Пифагора:
$PC^2 + CM^2 = PM^2$
$(AB - a)^2 + 4^2 = (BC + a)^2$
$AB^2 - 2ABa + a^2 + 16 = BC^2 + 2BCa + a^2$
$AB^2 - BC^2 + 2a(BC - AB) + 16 = 0$
$a = \frac{BC^2 - AB^2 + 16}{2(BC - AB)} = \frac{81 - 144 + 16}{2(9 - 12)} = -\frac{23}{2}$
Так как a является длиной отрезка PQ, который лежит внутри прямоугольника, то a должно быть положительным числом. Значит, прямая MC не пересекает стороны AB и CD прямоугольника, а точка O лежит на продолжении стороны AB за точку B.
Обозначим длину отрезка OB буквой b. Тогда по теореме Пифагора:
$OC^2 + CM^2 = OM^2$
$b^2 + 16 = (a + 9)^2$
$b^2 + 16 = \left(-\frac{23}{2} + 9\right)^2$
$b^2 + 16 = \frac{64}{4}$
$b^2 = \frac{16}{4} = 4$
$b = 2$
Таким образом, расстояние от точки M до точки пересечения диагоналей прямоугольника равно длине отрезка OM, которая равна:
$OM = OB + BM = 2 + 4 = 6$
Ответ: расстояние от точки M до точки пересечения диагоналей прямоугольника равно 6 см.
Так как прямая MC перпендикулярна плоскости ABCD, то она пересекает стороны AB и CD прямоугольника в точках P и Q соответственно (см. рисунок). Обозначим длину отрезка PQ буквой a.

Так как треугольник MCP прямоугольный, то по теореме Пифагора:
$PC^2 + CM^2 = PM^2$
$(AB - a)^2 + 4^2 = (BC + a)^2$
$AB^2 - 2ABa + a^2 + 16 = BC^2 + 2BCa + a^2$
$AB^2 - BC^2 + 2a(BC - AB) + 16 = 0$
$a = \frac{BC^2 - AB^2 + 16}{2(BC - AB)} = \frac{81 - 144 + 16}{2(9 - 12)} = -\frac{23}{2}$
Так как a является длиной отрезка PQ, который лежит внутри прямоугольника, то a должно быть положительным числом. Значит, прямая MC не пересекает стороны AB и CD прямоугольника, а точка O лежит на продолжении стороны AB за точку B.
Обозначим длину отрезка OB буквой b. Тогда по теореме Пифагора:
$OC^2 + CM^2 = OM^2$
$b^2 + 16 = (a + 9)^2$
$b^2 + 16 = \left(-\frac{23}{2} + 9\right)^2$
$b^2 + 16 = \frac{64}{4}$
$b^2 = \frac{16}{4} = 4$
$b = 2$
Таким образом, расстояние от точки M до точки пересечения диагоналей прямоугольника равно длине отрезка OM, которая равна:
$OM = OB + BM = 2 + 4 = 6$
Ответ: расстояние от точки M до точки пересечения диагоналей прямоугольника равно 6 см.
0
·
Хороший ответ
13 мая 2023 13:54
Остались вопросы?
Еще вопросы по категории Геометрия
Сформулируйте теоремы о пропорциональных отрезках в прямоугольном треугольнике...
За рисунком знайти кут x...
Смежные и вертикальные углы, их свойства. Урок 3. Повторение Установи соответствие. Чем больше один из смежных углов, Для одного угла смежные ему дв...
В Выпуклом четырёхугольнике ABCD известно что угол ADC =60* и AB=AD=DC. Найдите угол ABD, если угол ВСА = 55...
В трапеции ABCD известно ,что AB=CD ,BDA=24 и BDC =70.Найдите угол ABD....