Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 865 б
Пусть длины ребер параллелепипеда равны $a$, $b$ и $c$. Тогда из условия задачи имеем:
\begin{align*}
a^2 + b^2 &= 2c^2 \\
b^2 + c^2 &= 3a^2 \\
c &= 8\text{ см}
\end{align*}
Из первого уравнения находим $c^2 = \frac{a^2+b^2}{2}$, а из второго уравнения находим $a^2 = \frac{b^2+c^2}{3}$. Подставляем выражение для $c^2$ во второе уравнение и получаем:
$$a^2 = \frac{b^2+\frac{a^2+b^2}{2}}{3}$$
Решая это уравнение относительно $b^2$, получаем $b^2 = \frac{2a^2}{5}$.
Теперь можем выразить $c^2$ и $a^2$ через $b^2$:
\begin{align*}
c^2 &= \frac{a^2+b^2}{2} = \frac{3b^2}{2\cdot 2} = \frac{3a^2}{5} \\
a^2 &= \frac{b^2+c^2}{3} = \frac{5b^2}{9}
\end{align*}
Итак, мы нашли длины всех ребер параллелепипеда:
\begin{align*}
a &= \sqrt{\frac{5}{9}} b \\
b &= \sqrt{\frac{2}{5}} c \\
c &= 8\text{ см}
\end{align*}
Теперь можем вычислить объем параллелепипеда:
$$V = abc = \sqrt{\frac{5}{9}} \cdot \sqrt{\frac{2}{5}} \cdot 8^3 = \boxed{256\sqrt{10}}\text{ см}^3$$
\begin{align*}
a^2 + b^2 &= 2c^2 \\
b^2 + c^2 &= 3a^2 \\
c &= 8\text{ см}
\end{align*}
Из первого уравнения находим $c^2 = \frac{a^2+b^2}{2}$, а из второго уравнения находим $a^2 = \frac{b^2+c^2}{3}$. Подставляем выражение для $c^2$ во второе уравнение и получаем:
$$a^2 = \frac{b^2+\frac{a^2+b^2}{2}}{3}$$
Решая это уравнение относительно $b^2$, получаем $b^2 = \frac{2a^2}{5}$.
Теперь можем выразить $c^2$ и $a^2$ через $b^2$:
\begin{align*}
c^2 &= \frac{a^2+b^2}{2} = \frac{3b^2}{2\cdot 2} = \frac{3a^2}{5} \\
a^2 &= \frac{b^2+c^2}{3} = \frac{5b^2}{9}
\end{align*}
Итак, мы нашли длины всех ребер параллелепипеда:
\begin{align*}
a &= \sqrt{\frac{5}{9}} b \\
b &= \sqrt{\frac{2}{5}} c \\
c &= 8\text{ см}
\end{align*}
Теперь можем вычислить объем параллелепипеда:
$$V = abc = \sqrt{\frac{5}{9}} \cdot \sqrt{\frac{2}{5}} \cdot 8^3 = \boxed{256\sqrt{10}}\text{ см}^3$$
0
·
Хороший ответ
15 мая 2023 14:24
Остались вопросы?
Еще вопросы по категории Геометрия
В основание прямой призмы лежит прямоугольный треугольник,один из катетов которого равен 4 ,а гипотенуза корень из 65 . Найдите объем призмы ,если её...
Найдите отношение площадей треугольников АВС и PQR, если АВ=12 см, ВС=15 см, АС=21 см, QR=20 см, PR=28 см, PQ=16 см....
Требуется покрасить внешнюю часть пожарного ведра конической формы. Размеры ведра:диаметр 40 см, образующая 50 см. Сколько вёдер можно покрасить,если...
Из точки k, которая лежит вне плоскости альфа, проведены к этой плоскости наклонные ka и kb, образующие с ней углы 45° и 30° соответственно. найдите д...
в треугольнике abc с тупым углом acb проведены высоты aa1 и bb1. докажите что треугольники a1cb1 и bca подобны...