Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
Пусть длины ребер параллелепипеда равны $a$, $b$ и $c$. Тогда из условия задачи имеем:
\begin{align*}
a^2 + b^2 &= 2c^2 \\
b^2 + c^2 &= 3a^2 \\
c &= 8\text{ см}
\end{align*}
Из первого уравнения находим $c^2 = \frac{a^2+b^2}{2}$, а из второго уравнения находим $a^2 = \frac{b^2+c^2}{3}$. Подставляем выражение для $c^2$ во второе уравнение и получаем:
$$a^2 = \frac{b^2+\frac{a^2+b^2}{2}}{3}$$
Решая это уравнение относительно $b^2$, получаем $b^2 = \frac{2a^2}{5}$.
Теперь можем выразить $c^2$ и $a^2$ через $b^2$:
\begin{align*}
c^2 &= \frac{a^2+b^2}{2} = \frac{3b^2}{2\cdot 2} = \frac{3a^2}{5} \\
a^2 &= \frac{b^2+c^2}{3} = \frac{5b^2}{9}
\end{align*}
Итак, мы нашли длины всех ребер параллелепипеда:
\begin{align*}
a &= \sqrt{\frac{5}{9}} b \\
b &= \sqrt{\frac{2}{5}} c \\
c &= 8\text{ см}
\end{align*}
Теперь можем вычислить объем параллелепипеда:
$$V = abc = \sqrt{\frac{5}{9}} \cdot \sqrt{\frac{2}{5}} \cdot 8^3 = \boxed{256\sqrt{10}}\text{ см}^3$$
\begin{align*}
a^2 + b^2 &= 2c^2 \\
b^2 + c^2 &= 3a^2 \\
c &= 8\text{ см}
\end{align*}
Из первого уравнения находим $c^2 = \frac{a^2+b^2}{2}$, а из второго уравнения находим $a^2 = \frac{b^2+c^2}{3}$. Подставляем выражение для $c^2$ во второе уравнение и получаем:
$$a^2 = \frac{b^2+\frac{a^2+b^2}{2}}{3}$$
Решая это уравнение относительно $b^2$, получаем $b^2 = \frac{2a^2}{5}$.
Теперь можем выразить $c^2$ и $a^2$ через $b^2$:
\begin{align*}
c^2 &= \frac{a^2+b^2}{2} = \frac{3b^2}{2\cdot 2} = \frac{3a^2}{5} \\
a^2 &= \frac{b^2+c^2}{3} = \frac{5b^2}{9}
\end{align*}
Итак, мы нашли длины всех ребер параллелепипеда:
\begin{align*}
a &= \sqrt{\frac{5}{9}} b \\
b &= \sqrt{\frac{2}{5}} c \\
c &= 8\text{ см}
\end{align*}
Теперь можем вычислить объем параллелепипеда:
$$V = abc = \sqrt{\frac{5}{9}} \cdot \sqrt{\frac{2}{5}} \cdot 8^3 = \boxed{256\sqrt{10}}\text{ см}^3$$
0
·
Хороший ответ
15 мая 2023 14:24
Остались вопросы?
Еще вопросы по категории Геометрия
расстояние между двумя параллельными плоскостями равно 4дм. точки A и B лежат в данных плоскостях, а угол между отрезком AB и его проекцией на одну из...
Найдите объем прямой призмы abca1b1c1 если угол ab1c=60 градусов ab1=3, cb1=2...
точка М находится на расстоянии Н от плоскости альфа.проведенные 2 наклонные МР и МQ, где Р и Q-основания наклонных соответственно под углами 45 и 60...
На рисунке 64 точка O — центр окружности, ∠MON = 68°. Найдите угол MKN. Пожалуйста, с объяснением . даю 80 баллов....
В кубе 𝐴𝐵𝐶𝐷𝐴1𝐵1𝐶1𝐷1 найдите угол между: 𝐴𝐵 и 𝐴1𝐵1 𝐴𝐵 и 𝐴1𝐵 𝐴𝐵 и 𝐶1𝐶 𝐴𝐵 и 𝐶1𝐵 (𝐴𝐵𝐶) и (𝐵1𝐶1𝐷1) (𝐴𝐵𝐶) и (𝐵1𝐶1𝐵)...