Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
Пусть длины ребер параллелепипеда равны $a$, $b$ и $c$. Тогда из условия задачи имеем:
\begin{align*}
a^2 + b^2 &= 2c^2 \\
b^2 + c^2 &= 3a^2 \\
c &= 8\text{ см}
\end{align*}
Из первого уравнения находим $c^2 = \frac{a^2+b^2}{2}$, а из второго уравнения находим $a^2 = \frac{b^2+c^2}{3}$. Подставляем выражение для $c^2$ во второе уравнение и получаем:
$$a^2 = \frac{b^2+\frac{a^2+b^2}{2}}{3}$$
Решая это уравнение относительно $b^2$, получаем $b^2 = \frac{2a^2}{5}$.
Теперь можем выразить $c^2$ и $a^2$ через $b^2$:
\begin{align*}
c^2 &= \frac{a^2+b^2}{2} = \frac{3b^2}{2\cdot 2} = \frac{3a^2}{5} \\
a^2 &= \frac{b^2+c^2}{3} = \frac{5b^2}{9}
\end{align*}
Итак, мы нашли длины всех ребер параллелепипеда:
\begin{align*}
a &= \sqrt{\frac{5}{9}} b \\
b &= \sqrt{\frac{2}{5}} c \\
c &= 8\text{ см}
\end{align*}
Теперь можем вычислить объем параллелепипеда:
$$V = abc = \sqrt{\frac{5}{9}} \cdot \sqrt{\frac{2}{5}} \cdot 8^3 = \boxed{256\sqrt{10}}\text{ см}^3$$
\begin{align*}
a^2 + b^2 &= 2c^2 \\
b^2 + c^2 &= 3a^2 \\
c &= 8\text{ см}
\end{align*}
Из первого уравнения находим $c^2 = \frac{a^2+b^2}{2}$, а из второго уравнения находим $a^2 = \frac{b^2+c^2}{3}$. Подставляем выражение для $c^2$ во второе уравнение и получаем:
$$a^2 = \frac{b^2+\frac{a^2+b^2}{2}}{3}$$
Решая это уравнение относительно $b^2$, получаем $b^2 = \frac{2a^2}{5}$.
Теперь можем выразить $c^2$ и $a^2$ через $b^2$:
\begin{align*}
c^2 &= \frac{a^2+b^2}{2} = \frac{3b^2}{2\cdot 2} = \frac{3a^2}{5} \\
a^2 &= \frac{b^2+c^2}{3} = \frac{5b^2}{9}
\end{align*}
Итак, мы нашли длины всех ребер параллелепипеда:
\begin{align*}
a &= \sqrt{\frac{5}{9}} b \\
b &= \sqrt{\frac{2}{5}} c \\
c &= 8\text{ см}
\end{align*}
Теперь можем вычислить объем параллелепипеда:
$$V = abc = \sqrt{\frac{5}{9}} \cdot \sqrt{\frac{2}{5}} \cdot 8^3 = \boxed{256\sqrt{10}}\text{ см}^3$$
0
·
Хороший ответ
15 мая 2023 14:24
Остались вопросы?
Еще вопросы по категории Геометрия
Длина отрезка AB равна 12 см. Сколько существует на прямой AB точек , для которых сумма расстояний до концов отрезка AB равна 12 см...
Выберите верное утверждение а) отрезки прямых заключенные между параллельными плоскостями равны б) если две плоскости имеют общую точку то они пересе...
Основанием прямой треугольной призмы служит прямоугольный треугольник с катетом 5см и гипотенузой 13см. Высота призмы равна 8см. Найдите площадь боков...
1) как найти sin (a), tg (a), ctg (a) если cos(a)=2/3 2)как найти cos(a), tg (a), ctg (a) если sin (a)=√3/2 3)как найти cos(a), tg (a), ctg (a) если s...
Точки D (1; 4) и E (2; 2) — середины сторон AC и BC треугольника ABC соответственно. Чему равны координаты вершины C, если В (-3; -1)?...