Лучшие помощники
- Megamozg 2180 б
- Matalya1 1800 б
- DevAdmin 1690 б
- arkasha_bortnikov 840 б
- Dwayne_Johnson 840 б
Основанием прямоугольного параллелепипеда АВСДА1В1С1Д1, является квадрат со стороной равной 2. На боковом ребре ДД1, равном 3 выбрана точка К, которая делит его в отношении 2:1 считая от вершины Д. Найдите: а) Угол между прямыми КС и А1В1; б) Угол между плоскостями АКС и АВС.
1
ответ
А) Для начала найдем координаты точек К, С и С1. Рассмотрим треугольник ДКС, в котором КД1:Д1С=2:1, а ДК1:К1С=1:1. Пусть ДК1=x, тогда К1С=3-x и Д1С=2(3-x)/3. Так как КС параллельна А1В1, то векторы КС и А1В1 коллинеарны, а значит, их скалярное произведение равно произведению их длин на косинус угла между ними. Найдем длину вектора А1В1: |А1В1|=√2^2+2^2=2√2. Найдем длину вектора КС: |КС|=√(3-x)^2+2^2. Тогда cos(угла между КС и А1В1)=cos(α)=(А1В1, КС)/(|А1В1||КС|)=(2√2(3-x))/2√2√(9-x^2)=-(3-x)/√(9-x^2). Ответ: α=arccos(-(3-x)/√(9-x^2)).
б) Угол между плоскостями АКС и АВС равен углу между их нормалями. Найдем нормали к этим плоскостям. Вектор нормали к плоскости АВС равен векторному произведению векторов АВ и АС: n1=АВ×АС. Найдем координаты этих векторов: АВ=(-2,0,0), АС=(0,2,0), тогда n1=(0,0,4). Вектор нормали к плоскости АКС равен векторному произведению векторов АК и АС: n2=АК×АС. Найдем координаты этих векторов: АК=(x,0,3), тогда n2=(0,3x,2(x-3)). Тогда cos(угла между плоскостями АКС и АВС)=cos(β)=|n1·n2|/(|n1||n2|)=(12(x-3))/8√2√(x^2-9). Ответ: β=arccos((3(x-3))/2√2√(x^2-9)).
б) Угол между плоскостями АКС и АВС равен углу между их нормалями. Найдем нормали к этим плоскостям. Вектор нормали к плоскости АВС равен векторному произведению векторов АВ и АС: n1=АВ×АС. Найдем координаты этих векторов: АВ=(-2,0,0), АС=(0,2,0), тогда n1=(0,0,4). Вектор нормали к плоскости АКС равен векторному произведению векторов АК и АС: n2=АК×АС. Найдем координаты этих векторов: АК=(x,0,3), тогда n2=(0,3x,2(x-3)). Тогда cos(угла между плоскостями АКС и АВС)=cos(β)=|n1·n2|/(|n1||n2|)=(12(x-3))/8√2√(x^2-9). Ответ: β=arccos((3(x-3))/2√2√(x^2-9)).
1
·
Хороший ответ
17 мая 2023 07:09
Остались вопросы?
Еще вопросы по категории Геометрия
Дан прямоугольный параллелепипед ABCDA1B1C1D1. Постройте сечение данного параллелепипеда плоскостью, проходящей через точки K, L и N. Запишите план по...
Диагональ равнобедренной трапеции перпендикулярна боковой стороне.найти диагональ трапеции если радиус описанной окружности равен 13см,а боковая сторо...
имеет Либо одну либо несколько инвариантных точек...
1. Дайте определение окружности. Что такое центр, радиус, хорда и диаметр окружности? 2. Что получится, если радиус равен хорде? 3. Свойство радиуса,...
Высота BM, проведённая из вершины угла ромба ABCD образует со стороной AB угол 30,° AM=4 см. Найдите длину диагонали BD ромба, если точка M лежит на с...
Все предметы