Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
Чтобы найти наибольшую возможную площадь закрашенной звездочки, нужно найти наибольшую площадь прямоугольника, который можно вписать внутрь квадрата со стороной 1010 и периметром 1010.
Площадь прямоугольника можно найти по формуле: площадь = длина * ширина.
Пусть длина прямоугольника будет х, тогда ширина будет 505 - х (так как периметр прямоугольника равен 2 * (длина + ширина), то 2 * (х + (505 - х)) = 1010). Тогда площадь прямоугольника равна: площадь = х * (505 - х).
Чтобы найти максимальное значение площади, нужно найти максимальное значение функции площади от переменной х. Для этого можно найти вершину параболы, заданной этой функцией.
Функция площади является параболой с ветвями вниз, так как перед х стоит отрицательный коэффициент. Вершина параболы находится в точке с абсциссой, равной -b / (2a), где a и b - коэффициенты при х в уравнении параболы.
В нашем случае a = -1, b = 505, поэтому абсцисса вершины параболы равна -505 / (2 * -1) = 252.5.
Так как длина прямоугольника не может быть дробным числом, то ближайшее к 252.5 целое число - это 253. Тогда ширина прямоугольника будет равна 505 - 253 = 252.
Таким образом, наибольшая возможная площадь закрашенной звездочки равна 253 * 252 = 63906.
Ответ: 63906.00 (округлено до двух знаков после запятой).
Площадь прямоугольника можно найти по формуле: площадь = длина * ширина.
Пусть длина прямоугольника будет х, тогда ширина будет 505 - х (так как периметр прямоугольника равен 2 * (длина + ширина), то 2 * (х + (505 - х)) = 1010). Тогда площадь прямоугольника равна: площадь = х * (505 - х).
Чтобы найти максимальное значение площади, нужно найти максимальное значение функции площади от переменной х. Для этого можно найти вершину параболы, заданной этой функцией.
Функция площади является параболой с ветвями вниз, так как перед х стоит отрицательный коэффициент. Вершина параболы находится в точке с абсциссой, равной -b / (2a), где a и b - коэффициенты при х в уравнении параболы.
В нашем случае a = -1, b = 505, поэтому абсцисса вершины параболы равна -505 / (2 * -1) = 252.5.
Так как длина прямоугольника не может быть дробным числом, то ближайшее к 252.5 целое число - это 253. Тогда ширина прямоугольника будет равна 505 - 253 = 252.
Таким образом, наибольшая возможная площадь закрашенной звездочки равна 253 * 252 = 63906.
Ответ: 63906.00 (округлено до двух знаков после запятой).
0
·
Хороший ответ
1 октября 2023 10:39
Остались вопросы?
Еще вопросы по категории Геометрия
Сторона основания правильной треугольной пирамиды равна 6, а её боковое ребро образует с плоскостью основания угол 45. Найти объём пирамиды...
Две окружности касаются внешним образом в точке A. Общая внешняя касательная касается этих окружностей в точках B и C. Докажите, что треугольник ABC п...
Одна из сторон параллелограмма в 6 раз больше другой ,а его периметр равен 84 см.Найдите стороны параллелограмма...
ДАЮ 40 БАЛЛОВ На тетрадном листочке в клеточку изображены четыре точки: A, B, C и D. Найди площадь треугольника ACD, если сторона клетки равна 6см....
Сколько осей симметрии имеет равносторонний треугольник и прямоугольник. Ответ проиллюстрируйте чертежом....