Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 865 б
Чтобы найти наибольшую возможную площадь закрашенной звездочки, нужно найти наибольшую площадь прямоугольника, который можно вписать внутрь квадрата со стороной 1010 и периметром 1010.
Площадь прямоугольника можно найти по формуле: площадь = длина * ширина.
Пусть длина прямоугольника будет х, тогда ширина будет 505 - х (так как периметр прямоугольника равен 2 * (длина + ширина), то 2 * (х + (505 - х)) = 1010). Тогда площадь прямоугольника равна: площадь = х * (505 - х).
Чтобы найти максимальное значение площади, нужно найти максимальное значение функции площади от переменной х. Для этого можно найти вершину параболы, заданной этой функцией.
Функция площади является параболой с ветвями вниз, так как перед х стоит отрицательный коэффициент. Вершина параболы находится в точке с абсциссой, равной -b / (2a), где a и b - коэффициенты при х в уравнении параболы.
В нашем случае a = -1, b = 505, поэтому абсцисса вершины параболы равна -505 / (2 * -1) = 252.5.
Так как длина прямоугольника не может быть дробным числом, то ближайшее к 252.5 целое число - это 253. Тогда ширина прямоугольника будет равна 505 - 253 = 252.
Таким образом, наибольшая возможная площадь закрашенной звездочки равна 253 * 252 = 63906.
Ответ: 63906.00 (округлено до двух знаков после запятой).
Площадь прямоугольника можно найти по формуле: площадь = длина * ширина.
Пусть длина прямоугольника будет х, тогда ширина будет 505 - х (так как периметр прямоугольника равен 2 * (длина + ширина), то 2 * (х + (505 - х)) = 1010). Тогда площадь прямоугольника равна: площадь = х * (505 - х).
Чтобы найти максимальное значение площади, нужно найти максимальное значение функции площади от переменной х. Для этого можно найти вершину параболы, заданной этой функцией.
Функция площади является параболой с ветвями вниз, так как перед х стоит отрицательный коэффициент. Вершина параболы находится в точке с абсциссой, равной -b / (2a), где a и b - коэффициенты при х в уравнении параболы.
В нашем случае a = -1, b = 505, поэтому абсцисса вершины параболы равна -505 / (2 * -1) = 252.5.
Так как длина прямоугольника не может быть дробным числом, то ближайшее к 252.5 целое число - это 253. Тогда ширина прямоугольника будет равна 505 - 253 = 252.
Таким образом, наибольшая возможная площадь закрашенной звездочки равна 253 * 252 = 63906.
Ответ: 63906.00 (округлено до двух знаков после запятой).
0
·
Хороший ответ
1 октября 2023 10:39
Остались вопросы?
Еще вопросы по категории Геометрия
Точка А принадлежит отрезку CD. Длина CD=8см 9мм, CА=3см 6мм. Найти длину отрезка АD....
Как начертить куб?...
В треугольнике ABC известно,что угол C=90 градусов,угол A=30 градусов,отрезok BM биссектриса треугольника.найдите катет AC,если BM=6 см....
1.Сумма вертикальных углов AND и CNB,образованных при пересечении прямых Ab и d,равна 240,N-точка пересечения прямых.Найдите угол ANC 2.Один из смежны...
Найдите углы равнобедренного треугольника, если один из его углов равен: а) 40 градусов б) 60 градусов в) 100 градусов...