Лучшие помощники
- Megamozg 2190 б
- Matalya1 1800 б
- DevAdmin 1695 б
- arkasha_bortnikov 860 б
- Dwayne_Johnson 845 б
В пространстве введена система координат. На тело, находящееся в точке M(–3; 8;–2)
действуют две силы. Если бы на тело действовала только первая сила, оно переместилось бы в точку A(–1; 7;–3)
. Если бы на тело действовала только вторая сила, оно переместилось бы в точку B(–5; 8; 4). В какую точку переместится тело при одновременном действии двух этих сил? На каком расстоянии находится эта точка от точки M
?
Сделайте рисунок. Запишите решение. Укажите координаты точки, в которую переместится тело, и расстояние от неё до точки M
1
ответ
Для решения данной задачи воспользуемся принципом суперпозиции сил.
Пусть первая сила, действующая на тело, равна F1, а вторая сила - F2. При одновременном действии этих двух сил на тело, оно переместится в точку C.
Так как тело переместилось бы в точку A при действии только силы F1, то вектор суммы сил F1 + F2 должен быть направлен из точки A в точку C.
Аналогично, так как тело переместилось бы в точку B при действии только силы F2, то вектор суммы сил F1 + F2 должен быть направлен из точки B в точку C.
Таким образом, точка C является точкой пересечения прямых AB и AC.
Найдем координаты точки C. Для этого воспользуемся уравнениями прямых AB и AC.
Уравнение прямой AB можно записать в параметрическом виде:
x = -5 + t(-1 - (-5)) = -5 + 4t
y = 8 + t(8 - 8) = 8
z = 4 + t(3 - 4) = 4 - t
Уравнение прямой AC можно записать в параметрическом виде:
x = -3 + s(-1 - (-3)) = -3 + 2s
y = 8 + s(7 - 8) = 8 - s
z = -2 + s(-3 - (-2)) = -2 - s
Теперь приравняем координаты точки C по параметрам t и s:
-5 + 4t = -3 + 2s
8 = 8 - s
4 - t = -2 - s
Из первого уравнения получаем:
4t = 2s + 2
t = (2s + 2) / 4
t = (s + 1) / 2
Подставим это значение t во второе уравнение:
4 - (s + 1) / 2 = -2 - s
8 - (s + 1) = -4 - 2s
8 - s - 1 = -4 - 2s
-3 - s = -4 - 2s
s - 2s = -4 + 3
-s = -1
s = 1
Теперь найдем значение t, подставив s = 1 в первое уравнение:
t = (1 + 1) / 2
t = 1
Таким образом, координаты точки C равны:
x = -5 + 4t = -5 + 4 = -1
y = 8
z = 4 - t = 4 - 1 = 3
Таким образом, точка C имеет координаты C(-1; 8; 3).
Теперь найдем расстояние между точкой C и точкой M. Для этого воспользуемся формулой расстояния между двумя точками в пространстве:
d = √((x2 - x1)^2 + (y2 - y1)^2 + (z2 - z1)^2)
Подставим координаты точек C и M в формулу:
d = √((-1 - (-3))^2 + (8 - 8)^2 + (3 - (-2))^2)
d = √(2^2 + 0 + 5^2)
d = √(4 + 0 + 25)
d = √29
Таким образом, точка C имеет координаты C(-1; 8; 3) и расстояние от неё до точки M равно √29.
Пусть первая сила, действующая на тело, равна F1, а вторая сила - F2. При одновременном действии этих двух сил на тело, оно переместится в точку C.
Так как тело переместилось бы в точку A при действии только силы F1, то вектор суммы сил F1 + F2 должен быть направлен из точки A в точку C.
Аналогично, так как тело переместилось бы в точку B при действии только силы F2, то вектор суммы сил F1 + F2 должен быть направлен из точки B в точку C.
Таким образом, точка C является точкой пересечения прямых AB и AC.
Найдем координаты точки C. Для этого воспользуемся уравнениями прямых AB и AC.
Уравнение прямой AB можно записать в параметрическом виде:
x = -5 + t(-1 - (-5)) = -5 + 4t
y = 8 + t(8 - 8) = 8
z = 4 + t(3 - 4) = 4 - t
Уравнение прямой AC можно записать в параметрическом виде:
x = -3 + s(-1 - (-3)) = -3 + 2s
y = 8 + s(7 - 8) = 8 - s
z = -2 + s(-3 - (-2)) = -2 - s
Теперь приравняем координаты точки C по параметрам t и s:
-5 + 4t = -3 + 2s
8 = 8 - s
4 - t = -2 - s
Из первого уравнения получаем:
4t = 2s + 2
t = (2s + 2) / 4
t = (s + 1) / 2
Подставим это значение t во второе уравнение:
4 - (s + 1) / 2 = -2 - s
8 - (s + 1) = -4 - 2s
8 - s - 1 = -4 - 2s
-3 - s = -4 - 2s
s - 2s = -4 + 3
-s = -1
s = 1
Теперь найдем значение t, подставив s = 1 в первое уравнение:
t = (1 + 1) / 2
t = 1
Таким образом, координаты точки C равны:
x = -5 + 4t = -5 + 4 = -1
y = 8
z = 4 - t = 4 - 1 = 3
Таким образом, точка C имеет координаты C(-1; 8; 3).
Теперь найдем расстояние между точкой C и точкой M. Для этого воспользуемся формулой расстояния между двумя точками в пространстве:
d = √((x2 - x1)^2 + (y2 - y1)^2 + (z2 - z1)^2)
Подставим координаты точек C и M в формулу:
d = √((-1 - (-3))^2 + (8 - 8)^2 + (3 - (-2))^2)
d = √(2^2 + 0 + 5^2)
d = √(4 + 0 + 25)
d = √29
Таким образом, точка C имеет координаты C(-1; 8; 3) и расстояние от неё до точки M равно √29.
0
·
Хороший ответ
15 октября 2023 10:54
Остались вопросы?
Еще вопросы по категории Геометрия
Углы DEF и MEF-смежные, луч EK-биссектриcа угла DEF,угол KEF в 4 раза меньше угла MEF.Найдите углы DEF и MEF. Помогите оч срочно....
В окружности с центром O отрезки AC и BD — диаметры. Вписанный угол ACB равен 68°. Найдите угол AOD. Ответ дайте в градусах....
6) найти площадь боковой поверхности правильной шестиугольной пирамиды с высотой 4 дм и боковым ребром 16 дм С рисунком!...
Помогите, пожалуйста.) Основание перпендикуляра, проведенного из вершины прямоугольника на его диагональ, делит эту диагональ на отрезки длинной 9 см...
Найдите площадь прямоугольного треугольника, если биссектриса прямого угла делит гипотенузу на отрезки длинной 15 и 20...
Все предметы