Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 865 б
Для решения этой задачи воспользуемся теоремой косинусов. Согласно этой теореме, квадрат третьей стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.
Итак, пусть a = 8 см, b = 4√3 см, а угол между ними равен 30°.
Тогда третья сторона треугольника (с) будет равна:
c² = a² + b² - 2ab * cos(30°)
c² = 8² + (4√3)² - 2 * 8 * 4√3 * cos(30°)
c² = 64 + 48 - 64√3 * (1/2)
c² = 112 - 32√3
c ≈ √(112 - 32√3)
c ≈ √(16 * 7 - 32√3)
c ≈ √(16 * 7 - 16 * 2√3)
c ≈ √16 * (√7 - √2√3)
c ≈ 4 * (√7 - √2√3)
c ≈ 4 * (√7 - √6)
Таким образом, третья сторона треугольника примерно равна 4 * (√7 - √6) см.
Чтобы найти площадь треугольника, воспользуемся формулой Герона:
S = √(p * (p - a) * (p - b) * (p - c))
где p - полупериметр треугольника, равный (a + b + c) / 2.
Итак, p = (a + b + c) / 2
p = (8 + 4√3 + 4 * (√7 - √6)) / 2
p = (8 + 4√3 + 4√7 - 4√6) / 2
p = (12 + 4√3 + 4√7 - 4√6) / 2
p = 6 + 2√3 + 2√7 - 2√6
Теперь можем найти площадь треугольника:
S = √(p * (p - a) * (p - b) * (p - c))
S = √((6 + 2√3 + 2√7 - 2√6) * (6 + 2√3 + 2√7 - 2√6 - 8) * (6 + 2√3 + 2√7 - 2√6 - 4√3) * (6 + 2√3 + 2√7 - 2√6 - 4 * (√7 - √6)))
После выполнения всех вычислений получим конечный результат.
Итак, пусть a = 8 см, b = 4√3 см, а угол между ними равен 30°.
Тогда третья сторона треугольника (с) будет равна:
c² = a² + b² - 2ab * cos(30°)
c² = 8² + (4√3)² - 2 * 8 * 4√3 * cos(30°)
c² = 64 + 48 - 64√3 * (1/2)
c² = 112 - 32√3
c ≈ √(112 - 32√3)
c ≈ √(16 * 7 - 32√3)
c ≈ √(16 * 7 - 16 * 2√3)
c ≈ √16 * (√7 - √2√3)
c ≈ 4 * (√7 - √2√3)
c ≈ 4 * (√7 - √6)
Таким образом, третья сторона треугольника примерно равна 4 * (√7 - √6) см.
Чтобы найти площадь треугольника, воспользуемся формулой Герона:
S = √(p * (p - a) * (p - b) * (p - c))
где p - полупериметр треугольника, равный (a + b + c) / 2.
Итак, p = (a + b + c) / 2
p = (8 + 4√3 + 4 * (√7 - √6)) / 2
p = (8 + 4√3 + 4√7 - 4√6) / 2
p = (12 + 4√3 + 4√7 - 4√6) / 2
p = 6 + 2√3 + 2√7 - 2√6
Теперь можем найти площадь треугольника:
S = √(p * (p - a) * (p - b) * (p - c))
S = √((6 + 2√3 + 2√7 - 2√6) * (6 + 2√3 + 2√7 - 2√6 - 8) * (6 + 2√3 + 2√7 - 2√6 - 4√3) * (6 + 2√3 + 2√7 - 2√6 - 4 * (√7 - √6)))
После выполнения всех вычислений получим конечный результат.
0
·
Хороший ответ
23 октября 2023 07:00
Остались вопросы?
Еще вопросы по категории Геометрия
Периметр параллелограмма равен 64см, одна из сторон равна 11см. Найдите другую сторону. И чертёж пожалуйста!...
Тест (ответить да или нет). Если прямая перпендикулярна к плоскости, то она перпендикулярна к любой прямой, лежащей в этой плоскости. Если прямая перп...
В правильной треугольной призме ABCA1B1C1 стороны оснований равны 2√3, боковые ребра равны 5. Найдите площадь сечения призмы плоскостью, проходящей че...
На сторонах AВ и AD параллелограмма ABCD отмечены соответственно точки F и К так, что AK = KD, a AF : FB = 1 : 2. Найдите площадь треугольника CFK, ес...
Свойства трапеции и признаки трапеции...