Лучшие помощники
- Megamozg 2200 б
- Matalya1 1800 б
- DevAdmin 1705 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 860 б
Для решения этой задачи воспользуемся теоремой косинусов. Согласно этой теореме, квадрат третьей стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.
Итак, пусть a = 8 см, b = 4√3 см, а угол между ними равен 30°.
Тогда третья сторона треугольника (с) будет равна:
c² = a² + b² - 2ab * cos(30°)
c² = 8² + (4√3)² - 2 * 8 * 4√3 * cos(30°)
c² = 64 + 48 - 64√3 * (1/2)
c² = 112 - 32√3
c ≈ √(112 - 32√3)
c ≈ √(16 * 7 - 32√3)
c ≈ √(16 * 7 - 16 * 2√3)
c ≈ √16 * (√7 - √2√3)
c ≈ 4 * (√7 - √2√3)
c ≈ 4 * (√7 - √6)
Таким образом, третья сторона треугольника примерно равна 4 * (√7 - √6) см.
Чтобы найти площадь треугольника, воспользуемся формулой Герона:
S = √(p * (p - a) * (p - b) * (p - c))
где p - полупериметр треугольника, равный (a + b + c) / 2.
Итак, p = (a + b + c) / 2
p = (8 + 4√3 + 4 * (√7 - √6)) / 2
p = (8 + 4√3 + 4√7 - 4√6) / 2
p = (12 + 4√3 + 4√7 - 4√6) / 2
p = 6 + 2√3 + 2√7 - 2√6
Теперь можем найти площадь треугольника:
S = √(p * (p - a) * (p - b) * (p - c))
S = √((6 + 2√3 + 2√7 - 2√6) * (6 + 2√3 + 2√7 - 2√6 - 8) * (6 + 2√3 + 2√7 - 2√6 - 4√3) * (6 + 2√3 + 2√7 - 2√6 - 4 * (√7 - √6)))
После выполнения всех вычислений получим конечный результат.
Итак, пусть a = 8 см, b = 4√3 см, а угол между ними равен 30°.
Тогда третья сторона треугольника (с) будет равна:
c² = a² + b² - 2ab * cos(30°)
c² = 8² + (4√3)² - 2 * 8 * 4√3 * cos(30°)
c² = 64 + 48 - 64√3 * (1/2)
c² = 112 - 32√3
c ≈ √(112 - 32√3)
c ≈ √(16 * 7 - 32√3)
c ≈ √(16 * 7 - 16 * 2√3)
c ≈ √16 * (√7 - √2√3)
c ≈ 4 * (√7 - √2√3)
c ≈ 4 * (√7 - √6)
Таким образом, третья сторона треугольника примерно равна 4 * (√7 - √6) см.
Чтобы найти площадь треугольника, воспользуемся формулой Герона:
S = √(p * (p - a) * (p - b) * (p - c))
где p - полупериметр треугольника, равный (a + b + c) / 2.
Итак, p = (a + b + c) / 2
p = (8 + 4√3 + 4 * (√7 - √6)) / 2
p = (8 + 4√3 + 4√7 - 4√6) / 2
p = (12 + 4√3 + 4√7 - 4√6) / 2
p = 6 + 2√3 + 2√7 - 2√6
Теперь можем найти площадь треугольника:
S = √(p * (p - a) * (p - b) * (p - c))
S = √((6 + 2√3 + 2√7 - 2√6) * (6 + 2√3 + 2√7 - 2√6 - 8) * (6 + 2√3 + 2√7 - 2√6 - 4√3) * (6 + 2√3 + 2√7 - 2√6 - 4 * (√7 - √6)))
После выполнения всех вычислений получим конечный результат.
0
·
Хороший ответ
23 октября 2023 07:00
Остались вопросы?
Еще вопросы по категории Геометрия
катет прямоугольного треугольника равен 30 см а его проекция на гепотенузу 18 см найдите гипотенузу и второй катет треугольника...
Найдите площадь квадрата,диагональ которого равна 6 см....
Сумма всех синусов или косинусов в треугольнике?...
Катеты равнобедренного прямоугольного треугольника равны 2+√2 Найдите радиус окружности, вписанной в этот треуго...
Площадь ромба равна 867. Одна из его диагоналей в 6 раз больше другой. Найдите меньшую диагональ....
Все предметы