Лучшие помощники
- Megamozg 2190 б
- Matalya1 1800 б
- DevAdmin 1695 б
- arkasha_bortnikov 860 б
- Dwayne_Johnson 845 б
Решите пожалуйста подробно задачу, желательно с рисунком!
Через вершины A и C треугольника ABC, площадь которого равна 10 корней из 3 проведена окружность, пересекающая сторону AB в точке M, а продолжение стороны BC – в точке N. Центр окружности, описанной около треугольника ABC, лежит на отрезке MN. Найти длину MN, если известно, что BC = 5, угол ABC = 60°.
1
ответ
Для начала нарисуем треугольник ABC и проведем окружность через вершины A и C:
\[
\begin{array}{c c}
\begin{tikzpicture}
\coordinate[label=below left:$A$] (A) at (0,0);
\coordinate[label=below right:$B$] (B) at (3,0);
\coordinate[label=above:$C$] (C) at (1.5,2.6);
\draw (A) -- node[below] {$5$} (B) -- (C) -- node[right] {$h$} cycle;
\draw (A) circle [radius=2.6];
\end{tikzpicture}
&
\begin{array}{l}
\text{где } h \text{ - высота треугольника,} \\
\text{так как площадь треугольника } ABC = 10\sqrt{3}.
\end{array}
\end{array}
\]
Поскольку $\angle ABC = 60^\circ$, то треугольник ABC является равносторонним. Таким образом, $AB = BC = AC = 5$.
Теперь обозначим точки пересечения окружности с сторонами AB и BC как M и N соответственно:
\[
\begin{array}{c c}
\begin{tikzpicture}
\coordinate[label=below left:$A$] (A) at (0,0);
\coordinate[label=below right:$B$] (B) at (3,0);
\coordinate[label=above:$C$] (C) at (1.5,2.6);
\draw (A) -- node[below] {$5$} (B) -- (C) -- node[right] {$h$} cycle;
\draw (A) circle [radius=2.6];
\coordinate[label=above left:$M$] (M) at (0,2.6);
\coordinate[label=above right:$N$] (N) at (1.5,0);
\end{tikzpicture}
&
\begin{array}{l}
\text{Так как центр окружности,} \\
\text{описанной около треугольника ABC,} \\
\text{лежит на отрезке MN, то он} \\
\text{также является центром окружности,} \\
\text{проведенной через вершины A и C.}
\end{array}
\end{array}
\]
Из равностороннего треугольника ABC следует, что высота равна $h = 5 \cdot \sqrt{3}$.
Также, поскольку AM и CN являются радиусами окружности, проведенной через вершины A и C, то они равны радиусу окружности, описанной около треугольника ABC. Следовательно, $AM = CN = 5 \cdot \sqrt{3}$.
Теперь рассмотрим треугольник AMC. Он является прямоугольным, так как AM и CM являются радиусами окружности. Из прямоугольного треугольника AMC мы можем найти длину отрезка MN:
\[
MN = AC - AM - CN = 5 - 5\sqrt{3} - 5\sqrt{3} = 5 - 10\sqrt{3}.
\]
Итак, длина отрезка MN равна $5 - 10\sqrt{3}$.
\[
\begin{array}{c c}
\begin{tikzpicture}
\coordinate[label=below left:$A$] (A) at (0,0);
\coordinate[label=below right:$B$] (B) at (3,0);
\coordinate[label=above:$C$] (C) at (1.5,2.6);
\draw (A) -- node[below] {$5$} (B) -- (C) -- node[right] {$h$} cycle;
\draw (A) circle [radius=2.6];
\end{tikzpicture}
&
\begin{array}{l}
\text{где } h \text{ - высота треугольника,} \\
\text{так как площадь треугольника } ABC = 10\sqrt{3}.
\end{array}
\end{array}
\]
Поскольку $\angle ABC = 60^\circ$, то треугольник ABC является равносторонним. Таким образом, $AB = BC = AC = 5$.
Теперь обозначим точки пересечения окружности с сторонами AB и BC как M и N соответственно:
\[
\begin{array}{c c}
\begin{tikzpicture}
\coordinate[label=below left:$A$] (A) at (0,0);
\coordinate[label=below right:$B$] (B) at (3,0);
\coordinate[label=above:$C$] (C) at (1.5,2.6);
\draw (A) -- node[below] {$5$} (B) -- (C) -- node[right] {$h$} cycle;
\draw (A) circle [radius=2.6];
\coordinate[label=above left:$M$] (M) at (0,2.6);
\coordinate[label=above right:$N$] (N) at (1.5,0);
\end{tikzpicture}
&
\begin{array}{l}
\text{Так как центр окружности,} \\
\text{описанной около треугольника ABC,} \\
\text{лежит на отрезке MN, то он} \\
\text{также является центром окружности,} \\
\text{проведенной через вершины A и C.}
\end{array}
\end{array}
\]
Из равностороннего треугольника ABC следует, что высота равна $h = 5 \cdot \sqrt{3}$.
Также, поскольку AM и CN являются радиусами окружности, проведенной через вершины A и C, то они равны радиусу окружности, описанной около треугольника ABC. Следовательно, $AM = CN = 5 \cdot \sqrt{3}$.
Теперь рассмотрим треугольник AMC. Он является прямоугольным, так как AM и CM являются радиусами окружности. Из прямоугольного треугольника AMC мы можем найти длину отрезка MN:
\[
MN = AC - AM - CN = 5 - 5\sqrt{3} - 5\sqrt{3} = 5 - 10\sqrt{3}.
\]
Итак, длина отрезка MN равна $5 - 10\sqrt{3}$.
0
·
Хороший ответ
3 мая 2024 20:03
Остались вопросы?
Еще вопросы по категории Геометрия
Сформулируйте определение выпуклого многоугольника ( периметр, диагональ). Сформулируйте теорему о сумме углов выпуклого многоугольника....
Отрезок АВ, концы которого лежат на арзных окружностях оснований цилиндра, пересекает ось цилиндра под углом 30 градусов. Найти объем цилиндра, если о...
ПОЖАЛУЙСТА СРОЧНО. Прямоугольник разбит на четыре меньших прямоугольника двумя прямолинейными разрезами. Периметры трёх из них, начиная с левого верхн...
Найдите площадь прямоугольного треугольника, если биссектриса прямого угла делит гипотенузу на отрезки длинной 15 и 20...
Какова градусная мера угла F, изображённого на рисунке 54? И люди там нет углов 90° всё что написано в чертеже то и есть ...
Все предметы