Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
Физический маятник представляет собой однородный
тонкий диск радиусом R = 10 см = 0.1 м, массой m, который совершает колебания в вертикальной плоскости вокруг горизонтальной оси, проходящей на расстоянии x от центра диска. Максимальная скорость центра диска в процессе колебаний – Vmax, максимальная кинетическая энергия – Wmax, период колебаний маятника – Т = 0.8 с. Трением в оси и сопротивлением воздуха пренебречь. Найти x
2
ответа
Для физического маятника максимальная кинетическая энергия соответствует максимальной скорости центра диска, и она равна \( W_{max} = \frac{1}{2} m V_{max}^2 \).
Также, период колебаний маятника связан с моментом инерции диска и расстоянием \( x \) от центра диска до оси вращения:
\[ T = 2\pi \sqrt{\frac{I}{mgx}} \]
где \( I \) - момент инерции диска относительно оси вращения, \( m \) - масса диска, \( g \) - ускорение свободного падения.
Момент инерции диска относительно оси вращения равен \( I = \frac{1}{2} m R^2 \).
Подставим это значение в уравнение для периода колебаний:
\[ T = 2\pi \sqrt{\frac{\frac{1}{2} m R^2}{mgx}} \]
\[ T = 2\pi \sqrt{\frac{R^2}{2gx}} \]
\[ T^2 = \frac{4\pi^2 R^2}{2gx} \]
\[ x = \frac{2\pi^2 R^2}{gT^2} \]
\[ x = \frac{2 \times (3.14)^2 \times (0.1)^2}{9.81 \times (0.8)^2} \]
\[ x \approx 0.16 \, м \]
Таким образом, расстояние \( x \) от центра диска до оси вращения составляет примерно 0.16 м.
Также, период колебаний маятника связан с моментом инерции диска и расстоянием \( x \) от центра диска до оси вращения:
\[ T = 2\pi \sqrt{\frac{I}{mgx}} \]
где \( I \) - момент инерции диска относительно оси вращения, \( m \) - масса диска, \( g \) - ускорение свободного падения.
Момент инерции диска относительно оси вращения равен \( I = \frac{1}{2} m R^2 \).
Подставим это значение в уравнение для периода колебаний:
\[ T = 2\pi \sqrt{\frac{\frac{1}{2} m R^2}{mgx}} \]
\[ T = 2\pi \sqrt{\frac{R^2}{2gx}} \]
\[ T^2 = \frac{4\pi^2 R^2}{2gx} \]
\[ x = \frac{2\pi^2 R^2}{gT^2} \]
\[ x = \frac{2 \times (3.14)^2 \times (0.1)^2}{9.81 \times (0.8)^2} \]
\[ x \approx 0.16 \, м \]
Таким образом, расстояние \( x \) от центра диска до оси вращения составляет примерно 0.16 м.
1
6 мая 2024 16:33
Остались вопросы?
Еще вопросы по категории Физика
Оля увидела в кабинете физики уравновешенные рычажные весы и лежащие рядом гирьки, и ей ужасно захотелось что-нибудь взвесить. Она положила на одну ча...
Какой изотоп образуется из 239 92U после двух β-распадов и одного α-распада?(Рымкевич 1196) Пожалуйста , можете подробно объяснить и расписать .Помоги...
Постройте изображение треугольника в плоском зеркале...
В каких перечисленных ниже системах отсчёта выполняется закон инерции? В системе отсчёта, связанной с телом отсчёта, вращающимся в некоторой инерциа...
Ширина шлюза 10 м. Шлюз заполнен водой на глубину 5 м. С какой силой давит на ворота шлюза?...